

July 23, 2024

## STEPPING INTO THE ACTUARIAL MODELING WONDERLAND

Gary Wang, FCAS, MAAA, CSPA Joey Sveda, FCAS, MAAA, CSPA

## Agenda

- Paradox Overview
- 2 Simpson's Paradox
- 3 Sleeping Beauty Paradox
- Berkson's Paradox



## PARADOX **OVERVIEW**



### **Mathematical Paradoxes**

"A mathematical paradox is a mathematical conclusion so unexpected that it is difficult to accept even though every step in the reasoning is valid."

- Britannica



# SIMPSON'S PARADOX



## Simpson's Paradox

Simpson's Paradox is a statistical phenomenon where an association between two variables in a population emerges, disappears or reverses when the population is divided into subpopulations.



Image: Medium.com; Analytics Vidhya



Springfield Insurance
Company is analyzing loss
trend on their historical
private passenger auto book.

**OVERALL 5-YR TREND: -1.1%** 





#### 5-YR PURE PREMIUM TREND

**OVERALL: -1.1%** 

Massachusetts: +0.8%

**Oregon: +0.4%** 





#### **DISTRIBUTIONAL SHIFT BY STATE**

#### Massachusetts

- Started writing prior to 2019
- Quarterly growth of ≈2%

#### Oregon

- Low exposure amount
- Exposure ramped up quickly in late 2021

## Distribution Springfield Insurance Company





#### 5-YR AVG PURE PREMIUM

Massachusetts: \$188

**Oregon: \$125** 





## Simpson's Takeaways

- Recognize that overall result might not be the total story
- Decompose the effects
- Evaluate data on a normalized basis



# SLEEPING BEAUTY PARADOX



## **Sleeping Beauty Paradox**

The Sleeping Beauty Paradox is a decision theory puzzle that deals with the logic and uncertainty of experience, or the idea that perspective shapes rational conclusions.



Image: Wikipedia.org; Sleeping Beauty Problem



## **Sleeping Beauty Paradox**

The Sleeping Beauty Paradox is a decision theory puzzle that deals with the logic and uncertainty of experience, or the idea that perspective shapes rational conclusions.

#### Problem:

Some researchers are going to put you to sleep. During the two days that your sleep will last, they will briefly wake you up either once or twice, depending on the toss of a fair coin (Heads: once; Tails: twice). After each waking, they will put you to back to sleep with a drug that makes you forget that waking. When you are first awakened, to what degree ought you believe that the outcome of the coin toss is Heads?



Image: Wikipedia.org; Sleeping Beauty Problem



## **Sleeping Beauty: Insurance Example**

Charming Insurance Company is analyzing conversion experience on their recent quoting data.

#### **OBSERVATIONS**

- Conversion rate is better for Source 1
- Conversion rate is better for adults
  - Observed within each source
- Source 2 attracts relatively more youth

| Channel  | Age   | Quotes | Bound | Conversion<br>Per Quote |  |
|----------|-------|--------|-------|-------------------------|--|
| Source 1 | Youth | 2,750  | 250   | 9.1%                    |  |
| Source 1 | Adult | 5,000  | 500   | 10.0%                   |  |
| Source 2 | Youth | 1,500  | 100   | 6.7%                    |  |
| Source 2 | Adult | 1,250  | 100   | 8.0%                    |  |
|          |       |        |       |                         |  |
|          |       |        |       | Conversion              |  |
| Channel  |       | Quotes | Bound | Per Quote               |  |
| Source 1 |       | 7,750  | 750   | 9.7%                    |  |
| Source 2 |       | 2,750  | 200   | 7.3%                    |  |
|          |       |        |       |                         |  |
|          | Age   | Quotes | Bound | Conversion<br>Per Quote |  |
|          | Youth | 4,250  | 350   | 8.2%                    |  |
|          | Adult | 6,250  | 600   | 9.6%                    |  |



## **Sleeping Beauty: Insurance Example**

- Conversion ratio =  $\frac{\# of \ policies \ issued}{\# of \ quotes}$
- Insured 1 gets three quotes
  - Should all three quotes be used in conversion ratio?

Should just one quote be used in conversion ratio?

Which quote should be used?





## **Sleeping Beauty: Insurance Example**

The bulk of the conversion differences were due to the multi-quoting phenomenon!

The only observation that still holds when considered at unique quote level is that Source 2 attracts relatively more youth

|          |       |        |        |       |            | Conversion |
|----------|-------|--------|--------|-------|------------|------------|
|          |       |        | Unique |       | Conversion | Per Unique |
| Channel  | Age   | Quotes | Quotes | Bound | Per Quote  | Quote      |
| Source 1 | Youth | 2,750  | 2,500  | 250   | 9.1%       | 10.0%      |
| Source 1 | Adult | 5,000  | 5,000  | 500   | 10.0%      | 10.0%      |
| Source 2 | Youth | 1,500  | 1,000  | 100   | 6.7%       | 10.0%      |
| Source 2 | Adult | 1,250  | 1,000  | 100   | 8.0%       | 10.0%      |
|          |       |        |        |       |            |            |
|          |       |        |        |       |            | Conversion |
|          |       |        | Unique |       | Conversion | Per Unique |
| Channel  |       | Quotes | Quotes | Bound | Per Quote  | Quote      |
| Source 1 |       | 7,750  | 7,500  | 750   | 9.7%       | 10.0%      |
| Source 2 |       | 2,750  | 2,000  | 200   | 7.3%       | 10.0%      |
|          |       |        |        |       |            |            |
|          |       |        |        |       |            | Conversion |
|          |       |        | Unique |       | Conversion | Per Unique |
|          | Age   | Quotes | Quotes | Bound | Per Quote  | Quote      |
|          | Youth | 4,250  | 3,500  | 350   | 8.2%       | 10.0%      |
|          | Adult | 6,250  | 6,000  | 600   | 9.6%       | 10.0%      |



## **Sleeping Beauty Takeaways**

- Ensure data aligns with the question being asked
- Understand the difference between experiment versus outcome
- Recognize when outcomes are not independent



## BERKSON'S PARADOX



### **Berkson's Paradox**

Berkson's Paradox is a particular kind of selection bias, caused by systematically observing some events more than others.



Image: Brilliant Staff Media; Adam Strandberg



## Berkson's: Insurance Example

How do age and credit score prevalence in insurance data compare to the overall population?

In the general population, credit score increases as age increases.





Source: Experian data from Q3 of 2023; ages as of 2023

#### Poplulation





## **Berkson's: Insurance Example**

Insurance companies tend to avoid writing young drivers or low credit scores.

How does this impact the relationship between age and credit score?





## **Berkson's: Insurance Example**

How do age and credit score prevalence in insurance data compare to the overall population?

#### **POTENTIAL IMPLICATIONS:**

- Unintuitive book profile
- Biased model results
- Market blind spots
- Misinformed new business strategy





## Berkson's: Takeaways

- Be aware of insurance practices and potential influence on data gathered
- Evaluate whether a sample is representative
- Investigate impacts of sampling bias



### **Thank You**

### Gary Wang, FCAS, MAAA, CSPA

309.807.2348

gwang@pinnacleactuaries.com

## Joey Sveda, FCAS, MAAA, CSPA

309.807.2323

jsveda@pinnacleactuaries.com

