
SAMPLE GAM SMOOTHS WITH THE MGCV R PACKAGE

SAM KLOESE, ACAS, CSPA, MAAA, CPCU, DTM

AGENDA

- Introduce dataOhlsson dataset
- Example Smooths
 - Thin plate smooths on driver age
 - Tensor interaction smooth on engine vehicle ratio and driver age
- Evaluating GAM exercise
 - Build a GAM on Training Data
 - Analyze Model Output
 - Show Holdout Test
- Review of Questions for GAMs

DATAOHLSSON DATASET

Part of R's insuranceData package

- Motorcycle Insurance Data
- Former Swedish Insurance Company Wasa
- Data from 1994-1998
- Preliminary adjustments
 - Columns renamed to English
 - Driver age capped between 16 and 80
 - Vehicle age capped at 40
 - Filtered for records where exposures > .01

- Data Size
 - 64,548 rows
 - 9 columns
 - 692 claims (fairly small)
 - 65,235.2 exposures
- Renamed Columns:
 - Driver Age
 - Gender
 - Parish
 - Engine Vehicle Ratio
 - (Engine power in kW x 100) / (Vehicle weight in kg + 75)
 - Rounded to the nearest lower integer
 - 75 kg represent the average driver weight
 - Vehicle Age
 - Claim-Free Bonus Class
 - Exposures
 - Claims
 - Losses

THIN PLATE SMOOTHS

THIN PLATE SMOOTHS

- Columns to smooth are wrapped in "s()"
- The smooth type is controlled by the bs argument
- The default smooth type is thin plate (bs = "tp")
- The argument k determines the number of basis functions

s {mgcv}

R Documentation

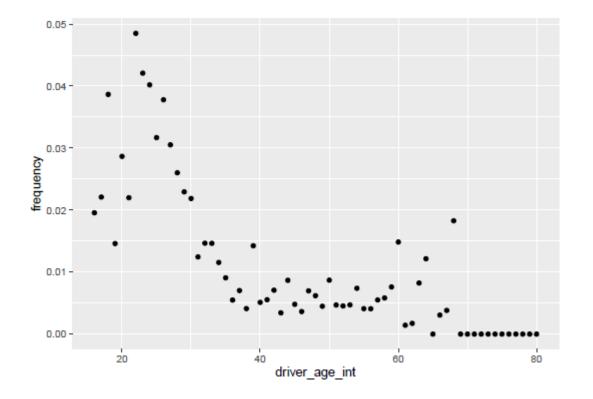
Defining smooths in GAM formulae

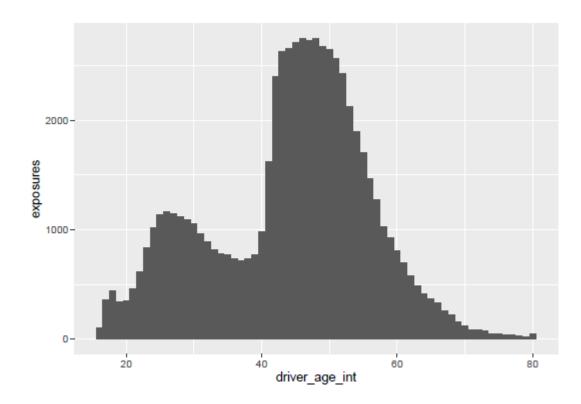
Description

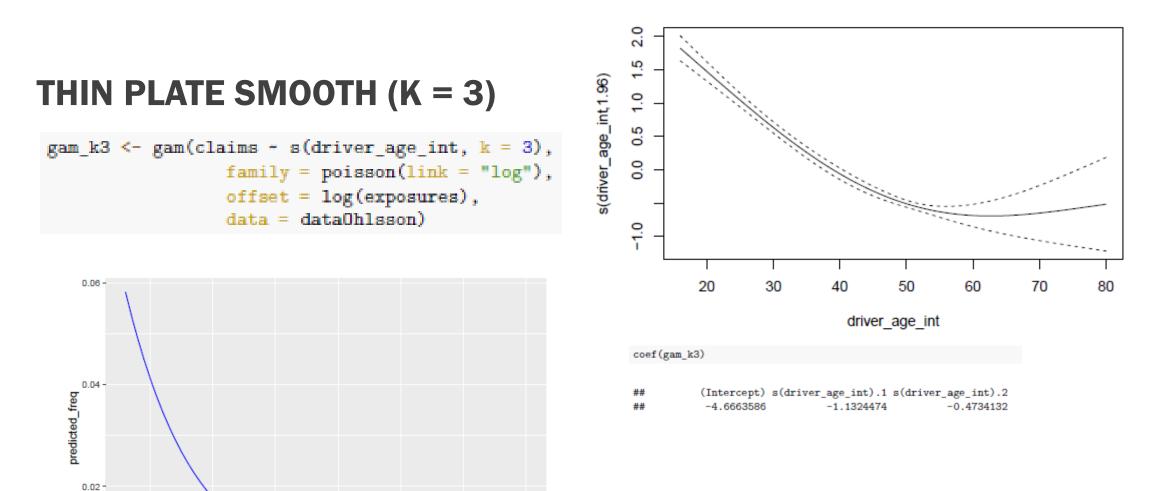
Function used in definition of smooth terms within gam model formulae. The function does not evaluate a (spline) smooth - it exists purely to help set up a model using spline based smooths.

Usage

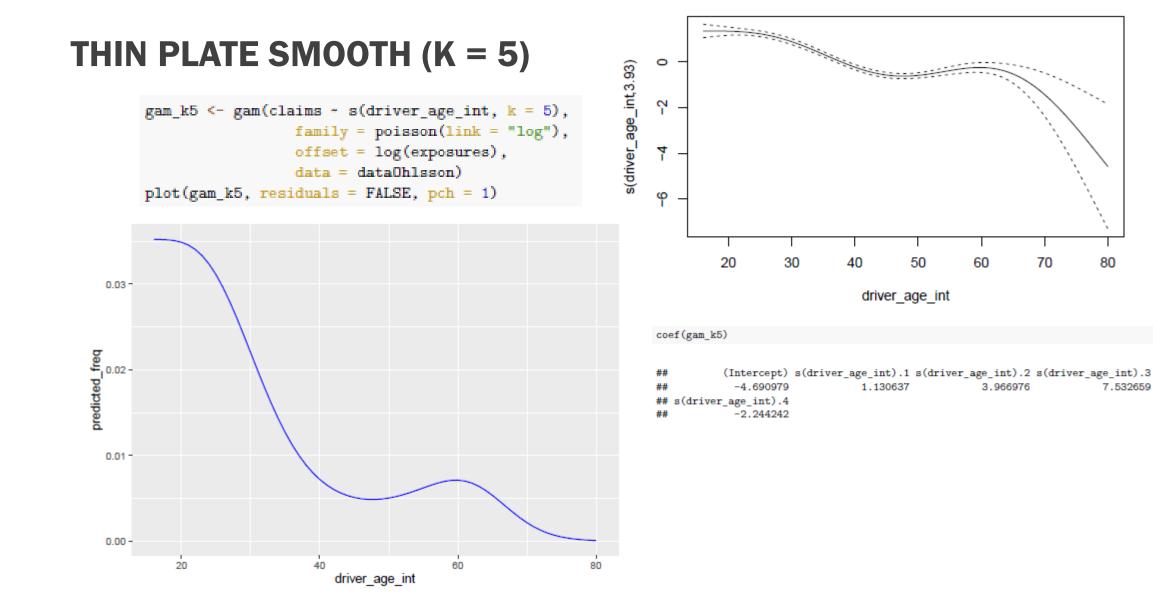
s(..., k=-1,fx=FALSE,bs="tp",m=NA,by=NA,xt=NULL,id=NULL,sp=NULL,pc=NULL)

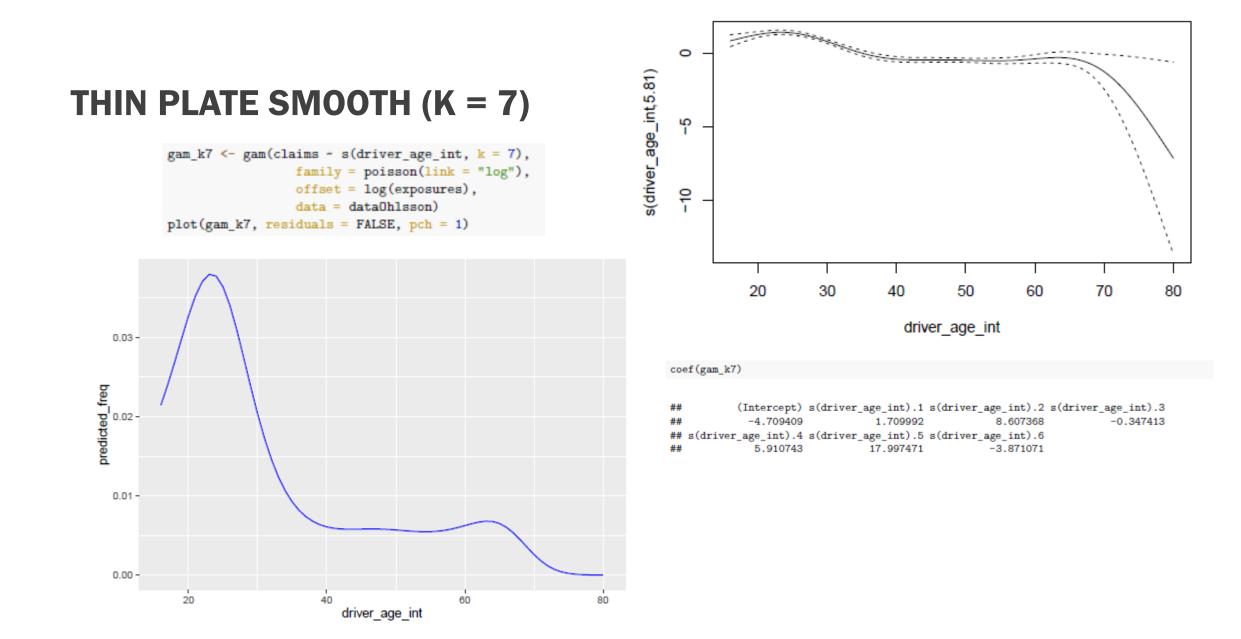

Arguments

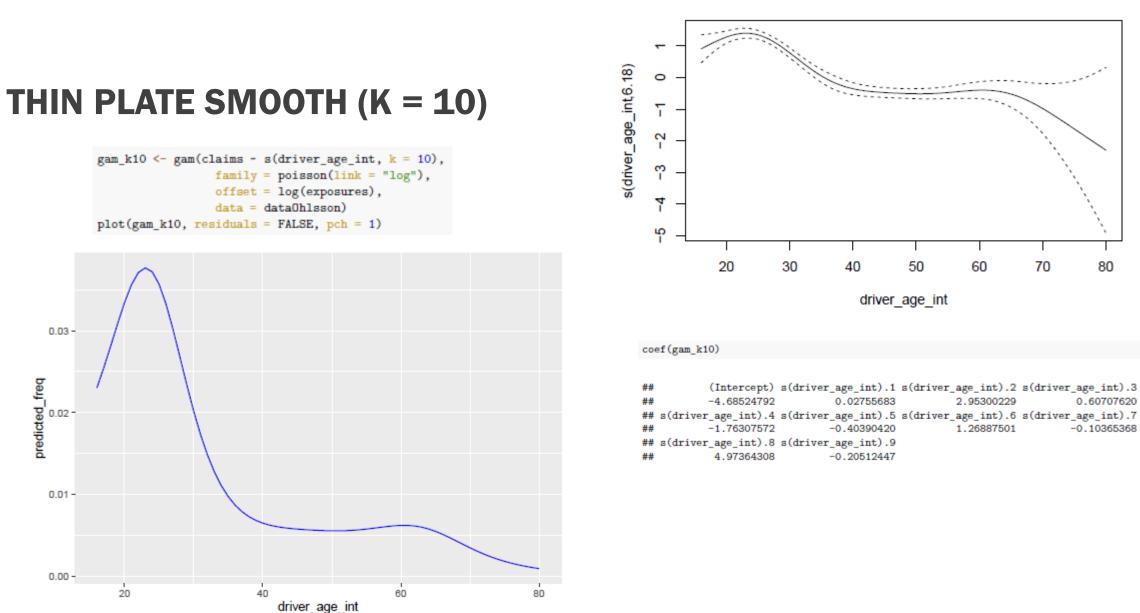

- ... a list of variables that are the covariates that this smooth is a function of. Transformations whose form depends on the values of the data are best avoided here: e.g. s(log(x)) is fine, but s(l(x/sd(x))) is not (see predict.gam).
- k the dimension of the basis used to represent the smooth term. The default depends on the number of variables that the smooth is a function of. k should not be less than the dimension of the null space of the penalty for the term (see <u>null.space.dimension</u>), but will be reset if it is. See <u>choose.k</u> for further information.
- fx indicates whether the term is a fixed d.f. regression spline (TRUE) or a penalized regression spline (FALSE).
- bs a two letter character string indicating the (penalized) smoothing basis to use. (eg "tp" for thin plate regression spline, "cr" for cubic regression spline). see <u>smooth.terms</u> for an over view of what is available.


THIN PLATE SMOOTHS

- Thin plate smooths can be used to smooth "wiggly" data
- Frequency by Driver age is well-known not to follow a straight line
 - High for the youngest drivers
 - High for the oldest drivers
 - Lower in the middle
- Experiment: Build a claim count model which uses thin plate smooths
 - Check how the smooth changes with different number of basis functions
 - Show default plot of the smooth term
 - Manually plot the predicted frequency by age


THIN PLATE SMOOTH





driver age int

80

0.60707620

-0.10365368

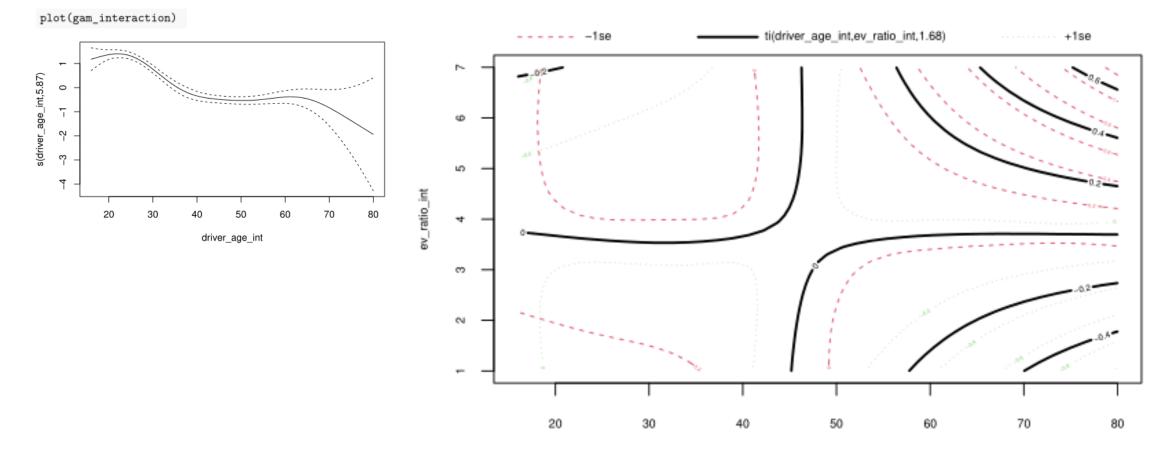
TENSOR INTERACTION SMOOTHS

TENSOR INTERACTION SMOOTHS

- Tensor interaction models pure interaction effect on top of the main effect
- Tensor smooths are useful when the 2 variables have different scales
- The relationship between driver age and engine vehicle ratio seems promising
 - Perhaps the added risk of a powerful motorcycle varies based on who is using it
 - Scales are different (Age: 16 80 years, EV Ratio: Classes 1 7
- Experiment: Build a claim count model which uses smoothed age, linear ev ratio, and a tensor interaction
 - Show how to formulate this model
 - Show visualization options

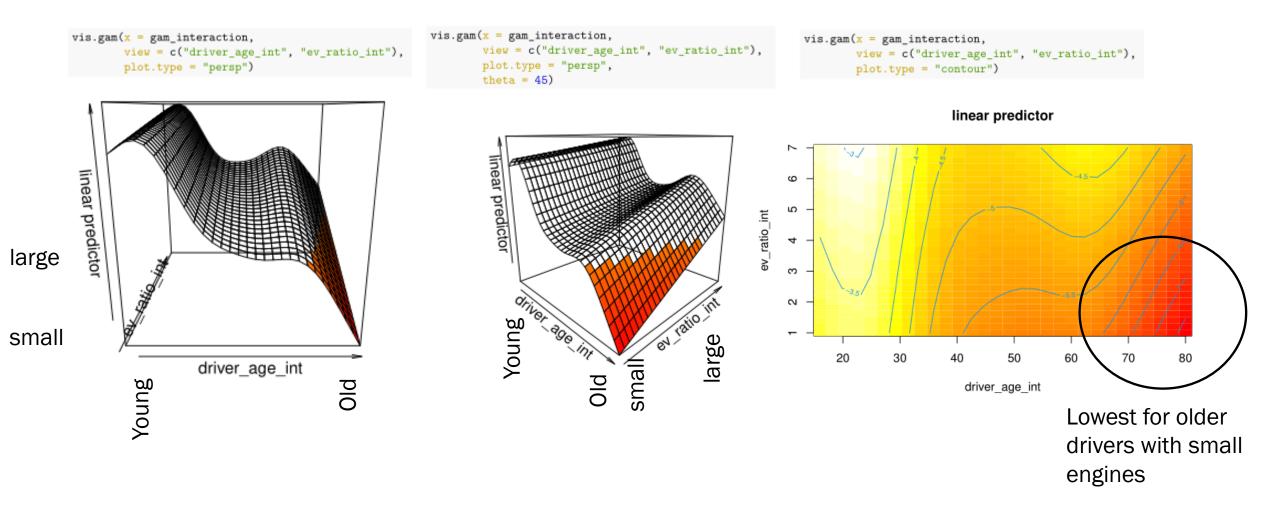
np=TRUE, xt=NULL, id=NULL, sp=NULL, mc=NULL, pc=NULL)

TENSOR INTERACTION SMOOTH


- One non-smoothed term: ev_ratio_int
- One smoothed main effect term: s(driver_age_int)
- One smoothed interaction term: ti(driver_age_int, ev_ratio_int)

coef(gam_interaction)

##	(Intercept)	ev_ratio_int
##	-5.340512244	0.166735483
##	s(driver_age_int).1	s(driver_age_int).2
##	0.145637615	2.418369431
##	s(driver_age_int).3	s(driver_age_int).4
##	0.474262426	-1.359533791
##	s(driver_age_int).5	s(driver_age_int).6
##	-0.313843700	0.964384322
##	s(driver_age_int).7	s(driver_age_int).8
##	-0.070576425	3.844865068
##	s(driver_age_int).9	<pre>ti(driver_age_int,ev_ratio_int).1</pre>
#	-0.381079013	-0.015337622
#	<pre>ti(driver_age_int,ev_ratio_int).2</pre>	<pre>ti(driver_age_int,ev_ratio_int).3</pre>
#	-0.053266027	-0.053997244
#	<pre>ti(driver_age_int,ev_ratio_int).4</pre>	<pre>ti(driver_age_int,ev_ratio_int).5</pre>
#	-0.044982751	0.009762226
#	<pre>ti(driver_age_int,ev_ratio_int).6</pre>	<pre>ti(driver_age_int,ev_ratio_int).7</pre>
#	0.100779115	0.145915637
#	<pre>ti(driver_age_int,ev_ratio_int).8</pre>	ti(driver_age_int,ev_ratio_int).9
	0 177600061	0.0000000000000000000000000000000000000


##	-0.381079013	-0.015337622
##	<pre>ti(driver_age_int,ev_ratio_int).2</pre>	<pre>ti(driver_age_int,ev_ratio_int).3</pre>
##	-0.053266027	-0.053997244
##	<pre>ti(driver_age_int,ev_ratio_int).4</pre>	<pre>ti(driver_age_int,ev_ratio_int).5</pre>
##	-0.044982751	0.009762226
##	<pre>ti(driver_age_int,ev_ratio_int).6</pre>	<pre>ti(driver_age_int,ev_ratio_int).7</pre>
##	0.100779115	0.145915637
##	ti(driver_age_int,ev_ratio_int).8	<pre>ti(driver_age_int,ev_ratio_int).9</pre>
##	0.177692961	0.003612855
##	ti(driver_age_int,ev_ratio_int).10	<pre>ti(driver_age_int,ev_ratio_int).11</pre>
##	0.224270919	0.357855181
##	<pre>ti(driver_age_int,ev_ratio_int).12</pre>	<pre>ti(driver_age_int,ev_ratio_int).13</pre>
##	0.437302847	0.009408327
##	<pre>ti(driver_age_int,ev_ratio_int).14</pre>	<pre>ti(driver_age_int,ev_ratio_int).15</pre>
##	0.374600372	0.588426938
##	ti(driver_age_int,ev_ratio_int).16	
##	0.718851900	

TENSOR INTERACTION SMOOTH

driver_age_int

TENSOR INTERACTION SMOOTH

EVALUATING GAM EXERCISE

TRAINING / TEST SPLIT

- Training Data (80%)
 - 80% of records with no claims
 - 80% of records with 1 or 2 claims
- Test Data (20%)
 - 20% of records with no claims
 - 20% of records with 1 or 2 claims

- Model built with the Training Data
- Decile plot built on the Test Data

summary(gam_select)

```
##
## Family: poisson
## Link function: log
##
## Formula:
## claims ~ ev_ratio_x1 + vehicle_age_int + s(driver_age_int) +
      ti(driver_age_int, ev_ratio_int)
##
##
## Parametric coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.530023 0.165342 -27.398 < 2e-16 ***
## ev_ratio_x1 0.167210 0.037089 4.508 6.53e-06 ***
## vehicle age int -0.084936 0.007325 -11.595 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                                   edf Ref.df Chi.sq p-value
##
## s(driver_age_int)
                                5.373 6.434 321.96 <2e-16 ***
## ti(driver_age_int,ev_ratio_int) 6.809 8.602 12.53 0.15
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0049 Deviance explained = 10.4%
## UBRE = -0.90391 Scale est. = 1
                                         n = 49745
```

summary(gam_select)

```
##
## Family: poisson
## Link function: log
##
## Formula:
## claims ~ ev_ratio_x1 + vehicle_age_int + s(driver_age_int) +
      ti(driver_age_int, ev_ratio_int)
##
## Parametric coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.530023 0.165342 -27.398 < 2e-16 ***
## ev_ratio_x1 0.167210 0.037089 4.508 6.53e-06 ***
## vehicle age int -0.084936 0.007325 -11.595 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                                   edf Ref.df Chi.sq p-value
##
## s(driver_age_int)
                                5.373 6.434 321.96 <2e-16 ***
## ti(driver_age_int,ev_ratio_int) 6.809 8.602 12.53 0.15
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0049 Deviance explained = 10.4%
## UBRE = -0.90391 Scale est. = 1
                                         n = 49745
```

summary(gam_select)

```
##
## Family: poisson
## Link function: log
##
## Formula:
## claims ~ ev_ratio_x1 + vehicle_age_int + s(driver_age_int) +
      ti(driver_age_int, ev_ratio_int)
##
##
## Parametric coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.530023 0.165342 -27.398 < 2e-16 ***
## ev ratio x1 0.167210 0.037089 4.508 6.53e-06 ***
## vehicle age int -0.084936 0.007325 -11.595 < 2e-16 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                                   edf Ref.df Chi.sq p-value
##
## s(driver_age_int)
                                5.373 6.434 321.96 <2e-16 ***
## ti(driver_age_int,ev_ratio_int) 6.809 8.602 12.53 0.15
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0049 Deviance explained = 10.4%
## UBRE = -0.90391 Scale est. = 1
                                         n = 49745
```

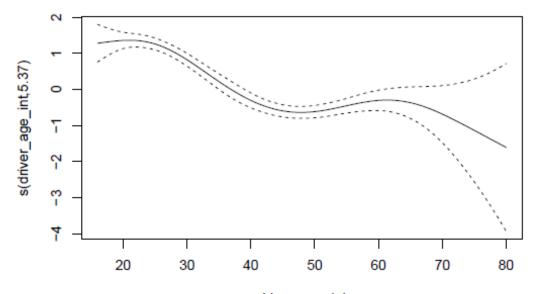
summary(gam_select)

 ti(driver_age_int, ev_ratio_int) has a pvalue of 0.15

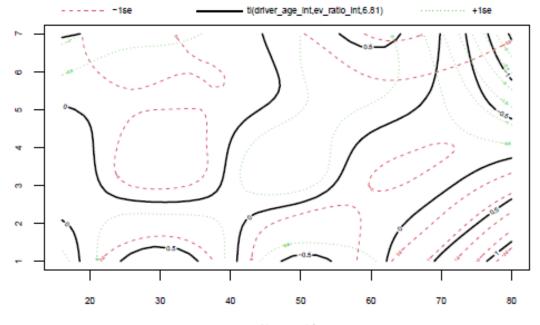
Family: poisson ## Link function: log ## ## Formula: ## claims ~ ev_ratio_x1 + vehicle_age_int + s(driver_age_int) + ti(driver_age_int, ev_ratio_int) ## ## ## Parametric coefficients: Estimate Std. Error z value Pr(>|z|) ## ## (Intercept) -4.530023 0.165342 -27.398 < 2e-16 *** ## ev_ratio_x1 0.167210 0.037089 4.508 6.53e-06 *** ## vehicle age int -0.084936 0.007325 -11.595 < 2e-16 *** ## ----## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Approximate significance of smooth terms: ## edf Ref.df Chi.sq p-value ## s(driver age int) 5.373 6.434 321.96 <2e-16 *** ## ti(driver_age_int,ev_ratio_int) 6.809 8.602 12.53 0.15 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## R-sq.(adj) = 0.0049 Deviance explained = 10.4% ## UBRE = -0.90391 Scale est. = 1 n = 49745

summary(gam_select)

 ti(driver_age_int, ev_ratio_int) has a pvalue of 0.15


R-sq. (adj) = 0.0049

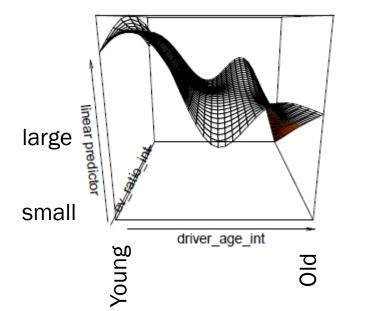
##

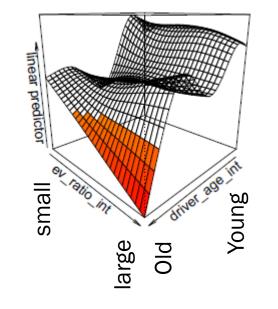

```
## Family: poisson
## Link function: log
##
## Formula:
## claims ~ ev_ratio_x1 + vehicle_age_int + s(driver_age_int) +
      ti(driver_age_int, ev_ratio_int)
##
##
## Parametric coefficients:
                   Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.530023 0.165342 -27.398 < 2e-16 ***
## ev ratio x1 0.167210 0.037089 4.508 6.53e-06 ***
## vehicle age int -0.084936 0.007325 -11.595 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                                    edf Ref.df Chi.sq p-value
##
## s(driver_age_int)
                                  5.373 6.434 321.96 <2e-16 ***
## ti(driver_age_int,ev_ratio_int) 6.809 8.602 12.53
                                                      0.15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0049 Deviance explained = 10.4%
## UBRE = -0.90391 Scale est. = 1
                                          n = 49745
```

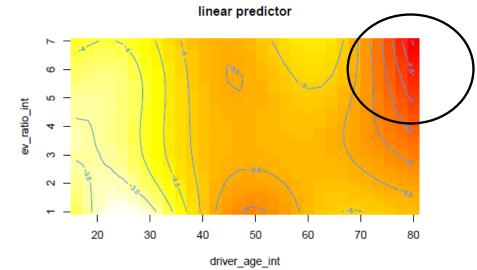
PLOT() ON THE MODEL OBJECT

plot(gam_select)

driver_age_int


ratio_int


driver_age_int


VIS.GAM() ON THE INTERACTED TERMS

vis.gam(x = gam_select, view = c("driver_age_int", "ev_ratio_int"), plot.type = "persp") vis.gam(x = gam_select, view = c("driver_age_int", "ev_ratio_int"), plot.type = "persp", theta = 135)

vis.gam(x = gam_select, view = c("driver_age_int", "ev_ratio_int"), plot.type = "contour")

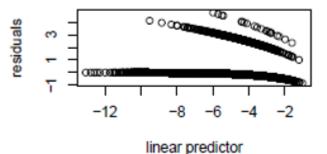
Lowest for older drivers with large engines

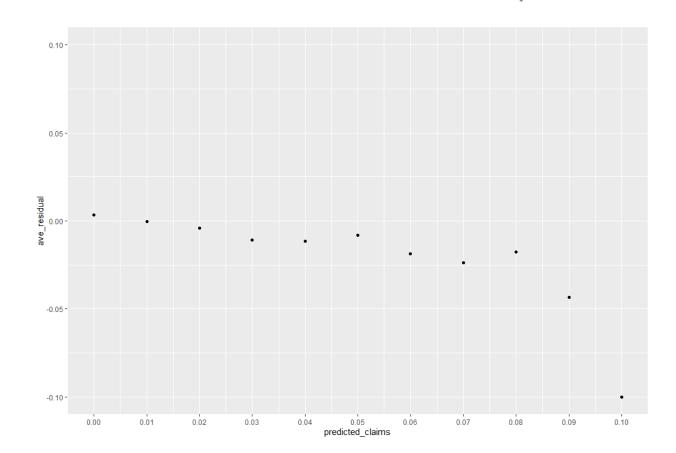
GAM.CHECK() AUTOMATED RESULTS

- We want HIGH values for these p-values
 - We are checking if one of the smooths is predictive of the residuals
 - We sure hope it isn't!
- We want k-index approximately 1


##

Method: UBRE Optimizer: outer newton ## full convergence after 6 iterations. ## Gradient range [-1.086673e-08,2.286584e-08] ## (score -0.9039131 & scale 1). ## Hessian positive definite, eigenvalue range [8.398131e-06,3.118174e-05]. ## Model rank = 28 / 28 ## ## Basis dimension (k) checking results. Low p-value (k-index<1) may ## indicate that k is too low, especially if edf is close to k'. ## ## k-index p-value k' edf ## s(driver age int) 9.00 5.37 0.89 0.12 ## ti(driver_age_int,ev_ratio_int) 16.00 6.81 0.92 0.60


GAM.CHECK() AUTOMATED PLOTS


- These plots can be challenging to evaluate for discrete values
- The residual plots look odd because the target variable is either 0, 1, or 2

AVERAGE RESIDUAL BY PREDICTED VALUE

- Here, predicted mean frequency is rounded to the nearest 0.01
- We are hoping for average residuals to be randomly distributed around zero
- This plot fails this test

Resids vs. linear pred.

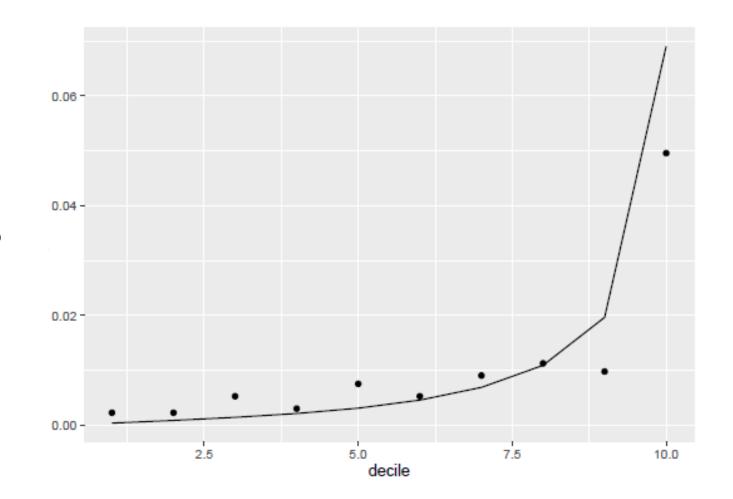
CONCURVITY() ON THE MODEL OBJECT

concurvity(gam_select, full = TRUE)

- Worst, observed, estimate are different measurements of concurvity
- Worst is the most pessimistic
- Rule of thumb: Worst case concurvity > 0.8 is too much

##		para	<pre>s(driver_age_int)</pre>	<pre>ti(driver_age_int,ev_ratio_int)</pre>
##	worst	0.912225	0.30529430	0.29609896
##	observed	0.912225	0.03634251	0.01815659
##	estimate	0.912225	0.05137036	0.02160891

CONCURVITY() ON THE MODEL OBJECT


concurvity(gam_select, full = TRUE)

- Worst, observed, estimate are different measurements of concurvity
- Worst is the most pessimistic
- Rule of thumb: Worst case concurvity > 0.8 is too much

##	para	s(driver_age_int)	<pre>ti(driver_age_int,ev_ratio_int)</pre>
## worst	0.912225	0.30529430	0.29609896
## observe	ed 0.912225	0.03634251	0.01815659
## estimat	te 0.912225	0.05137036	0.02160891

CONCLUSION

- Positives
 - Concurvity Metrics appear okay
- Negatives
 - The ti(driver_age, ev_ratio) smooth p-value from the summary = 0.15 (too high)
 - Driver age smooth plot is counterintuitive for 16 year old drivers
 - The s(driver age) p-value from gam.check() = 0.12 (too low)
 - The average residual by predicted value plot show the residuals do not have a mean of zero and higher predictions have a negative residual
 - The decile plot on test data confirms that our highest predictions are too high

HOW TO IMPROVE?

- Adjust number of basis functions with k
- Adjust the smoothing parameters (wiggliness penalty) with sp
- Try alternate smoothing functions with bs
- Use a larger, more credible dataset!

QUESTIONS FOR GAM'S

- Provide GAM Output [from summary()]
 - Effective Degrees of Freedom (EDF)
 - Reference Degrees of Freedom (RDF)
 - Chi-sq or F Statistic
 - P-values (hopefully low)
 - Adjusted R-Squared (hopefully closer to 1.0)
 - Deviance Explained
 - Scale Estimate
 - N Number of Observations (hopefully large credible)

- Provide GAM Output from the gam.check() statement.
 - Method
 - Optimizer
 - Convergence Iterations (hopefully converged)
 - Hessian Eigenvalues, Eigenvalue Range
 - Model Rank
 - Basis Dimension (k')
 - EDF
 - K-index (hopefully close to 1.0)
 - P-values (hopefully high)

QUESTIONS FOR GAM'S

Rationales

- Type / number of smooth terms
- K value(s)
- Smoothing parameter value(s)
- Optimization method
- Correlation matrix non-smoothed terms
- Concurvity metrics for smoothed terms
- AIC after each term in the model

Plots

- Plot of the smooth terms (since there are no betas) [plot()]
 - Include confidence intervals
- Visualizations for interactions [vis.gam()]
- Residual plots
 - gam.check() plots (useful for continuous target variables)
 - Average residual by predicted value (or bucket)
- Lift charts
 - Lorenz curve
 - Quantile Plot