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BACKGROUND

Hao Li is a Lead Data Scientist with Verisk Analytics, based in Buffalo Grove, IL, leading a team of
data scientists focusing on predictive modeling in personal line pricing. Hao has over 9 years
experience working in the banking and the insurance industry with a focus on predictive modeling
and actuarial pricing.

PROFESSIONAL DESIGNATIONS AND ACTIVITIES

Hao Li is an Associate of the Casualty Actuarial Society (ACAS), a Member of the American
Academy of Actuaries (MAAA) and a Financial Risk Manager of Global Association of Risk
Professionals (FRM).

EDUCATION

» Master of Probability and Statistics, Auburn University, USA
* Master of Finance, Auburn University, USA
« BSc in Management, Shanghai University of Engineering Science, China
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SELECTED EXPERIENCES

RAPA Symbol V2.0
* Developed the Other-Than-Collision coverage models for Risk Analyzer Personal Auto Symbol

VINhistory Score
* Led the development of by-coverage VINhistory score for Personal Auto to further improve rating
efficiency by leveraging history of vehicles from prior and current owners

RAHO Environmental V2.1

* Currently leading the effort to develop by-peril loss cost models for Home Owners insurance using
environmental information — weather, elevation, road features, census, business points, distance to
coast, and etc., in presence of standard rating variables.

* Leading the effort to refresh/rebuild pipeline for major 3rd-party data to support a suite of products
offered by Verisk

INTERESTS AND EXPERTISE

* Analytics | Data Science | Actuarial

» Underwriting

* Risk Segmentation | Risk Classification

« Econometrics | Risk | Finance

* Product Research | Product Development

© 2019 Verisk Analytics, Inc. All rights reserved.
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Introduction

Generalized Linear Model

gu) = Bo+ B1xix + B2xiz + -+ Bpxiy

d What exactly the problem are we solving? ,?,
% Lines of business? s
s Rate-making or reserving or underwriting or
p = E[Y] claim analytics?
6
4_
2 -
0_ -
-2t * . _
-4+ L i
%6 2 =3 0 2 2 6
Sources: scikit-learn generalized linear model, ordinary least squares
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Data Preparation

« Data scope
« Target

 Predictors

 Insurance data: policy/insured
characteristics

Non-insurance data

« Treatment of missing values and outliers

SERVE | ADD VALUE | INNOVATE

O What'’s the data at hand in general?
O What is target?

¢ Depending on the business problem,

whether the target is chosen properly?
O What are the predictors?

¢ Description of the predictors

s Any rationality certain predictors need to

be considered?
Q Are there any missing values or outliers
existing?

*» If yes, what was the treatment?

© 2019 Verisk Analytics, Inc. All rights reserved
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Technical Aspects of GLM

e Distribution

* Frequency: Negative binomial (a more
general case of Poisson)
« Severity: Gamma

e Pure premium: Tweedie
* Link function

« Weight
+ Offset

« Some components of the rating plan
held constant while analysts are

updating the signals from others

SERVE | ADD VALUE | INNOVATE

O)

W

1 What distribution should be used to work with the
target?

O What are the proper link functions?

U Is there a weight needed?

1 Under what situation, an offset should be
considered?

© 2019 Verisk Analytics, Inc. All rights reserved.

6



]

(

Model Building

« Data split
.+ Train / Validation / Test . , oZe
. Cross-validation U How is the data splllt handlec;J? _. —
** What's the portion of train, validation and
All Data teSt?
¢ |s cross validation used? What’s the
Training data Test data fOId ?

Fold1 | Fold2 | Fold3 || Folda [ Fold5 | "\

Splitl | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

> Finding Parameters

Split3 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split4 | Fold1 | Fold2 | Fold3 || Fold4 || Folds

SplitS | Fold 1 Fold 2 Fold 3 Fold 4 Fold5 |/

Final evaluation {l Test data

* Sources: scikit-learn cross-validation: evaluating estimator performance

SERVE | ADD VALUE | INNOVATE © 2019 Verisk Analytics, Inc. All rights reserved. 7
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Model Building

®

- - - . e ®
. O Any insight gained form the explanatory data analysis 2=
« Explanatory Data Analysis . : : :
s Any visual relationship between the target and
Profile of CONSTR
features?
— ** What level is used as base line for categorical
o - R——— variables?
" ** Any further binning can be done on individual
g categorical variables?
%88 S S s— S

*» What potential transformation can be used for
continuous variables?

CONSTR

Profile of AOI
20 Profile of AOC Profile of YR1
S5000- o0y 2030-

. s o Reo 4
2500 - L lol Loy ol ot s
............. ™ o .
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””” 3 $222%8 % 222282 0- ®®esscsccssscscssssscse
el » e T o | | ——

00100 = ©
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oozo L, 025-
20.025- - 8020~
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Model Building

Correlation/Association

loss

Pearson
Correlation

e 2
-1.0

05 00 05 1

PP

AOI

U Is correlation or association evaluated against

groups of variables?

* Can we identify highly correlated variables?
¢ Is there multicollinearity among features?
YR

AOC
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vModel Evaluation

o (Coefficient table

Coefficients:

Estimate Std. Error t value Pr(|t]|)

(Intercept) 7.434e+00
YR 5.089e-05
CONSTRBRICK -7.897e-02
CONSTRBRICK_MASONRY_VENEER -1.163e-01
CONSTRMASONRY -9.955e-02
CONSTRRESISTIVE -1.415e-01
AOI 9.543e-04

.607e+00
.787e-03
.379e-03
.958e-03
.595e-03
.736e-03
.263e-05

Signif. codes: 0 “**¥*’ Q_001 ‘**” 0.01 ‘*’ 0.05

2.
0

-14.
-19.
-17.
-14.

42.

061
028
683
513
791
532
166

0.1

0.0393 =*

0.9773

<2e-16 *

<2e-16
<2e-16
<2e-16

<2e-16 *

1

(Dispersion parameter for Tweedie family taken to be 19.86895)

Null deviance: 11743863

AIC: NA

Number of Fisher Scoring iterations: 4
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on 349999 degrees of freedom
Residual deviance: 11697660 on 349993 degrees of freedom

O What variables are included in the model?

** What's the magnitude and direction of

coefficient?

¢ Are they reasonable?
¢ Are all the coefficients statistically significant?

Coefficients:

Estimate Std. Error

(Intercept) 4,
Tn_AOI 1.
AOC_sq -5.
AOC 2.
CONSTRBRICK -8.
CONSTRBRICK_MASONRY_VENEER -1.
CONSTRMASONRY -9.
CONSTRRESISTIVE -1.

Signif. codes: 0 “*¥**’ (0.001

999e+00
497e-01
002e-03
501e-01
005e-02
192e-01
844e-02
478e-01

‘%%’ 0,01 ‘*’ 0.05 ‘.’ 0.

.243e-03
.92%e-04
.810e-06
.141e-04
.329e-03
.472e-03
.384e-03
.404e-03

t value Pr(>|t|)

1178.
188.
-2763.
2191.
-60.
-80.
-71.
-61.

24
82
60
71
24
92
14
48

1

<2e-16 *

<2e-16
<2e-16
<2e-16
<2e-16
<2e-16
<2e-16

<2e-16 ***

(Dispersion parameter for Tweedie family taken to be 0.8987965)

Null deviance: 11743863 on 349999 degrees of freedom
328180 on 349992 degrees of freedom

Residual deviance:
AIC: NA

Number of Fisher Scoring iterations: 4

© 2019 Verisk Analytics, Inc. All rights reserved. 10



Model Evaluation
 Gini

* Index = 2 * area between equality and

Lorenz curve

100%
l

—— Lorenz curve .
— — Line of equality 7

40% 60%  80%
1 | 1

Percentage of losses

20%
1

0%
|

good risks bad risks
| | | | | |

0% 20% 40% 60% 80% 100%
Percentage of exposures

* Sources: scikit-learn cross-validation: evaluating estimator performance
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Gini of model1
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U Does model performance improve between
different models?
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Model Evaluation

* Actual vs Predicted

Actual vs Predicted of AOI

3
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000000
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O Is prediction by individual variable close to actual
value?

Actual vs Predicted of CONSTR
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Model Evaluation

« Head-to-head (double lift chart)

Head to Head: m1 vs m2

80000
60000

40000

Percent Error

20000
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variable

=== percError1
= ' percError2
= Equity

O Which model produces a prediction close to the
actual between two competing candidates?

¢ This is similar to double lift chart
s A single error metric can be derived to show

which model is overall better than the other
one

© 2019 Verisk Analytics, Inc. All rights reserved. 13
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Model Evaluation

* Nested model comparison
- Ds — Dpg

# of added parameters * Qg

where D = 2 X (llsaturated - umodel)

 Penalized measure of fit

AIC = -2 X1l +2p

BIC=-2X%X1ll+p- log(n)

* Residual based analysis
 Response residual
» Working residual
« Pearson residual
» Deviance residual
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O When to use F test for comparing two models?
** When F is larger than the critical value, we

conclude that there is significant difference
between big and small model

0 When can AIC and BIC be useful?
0 Do we see residuals showing random pattern,
constant variance and normally distributed?
¢ Only useful for continuous distribution

© 2019 Verisk Analytics, Inc. All rights reserved
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vAdvantage and Disadvantage of GLM
« Advantage:

(]

» Help to understand associative relationship between features and target

« When project requires a strong interpretability from the models
« Disadvantage:

» Prediction accuracy due to constraint of “linear” framework

« Unstable result when handling features with multicollinearity and thin data
* Requires significant iteration and modeler’s intervention to improve model
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