The Market Information Systems (D) Task Force met March 25, 2022. The following Task Force members participated: Dana Popish Severinghaus, Vice Chair (IL); Evan G. Daniels represented by Maria Ailor (AZ); Ricardo Lara represented by Pam O’Connell (CA); Andrew N. Mais represented by Kurt Swan (CT); Trinidad Navarro represented by Frank Pyle (DE); Vicki Schmidt represented by Tate Flott (KS); Sharon P. Clark represented by Ron Kreiter (KY); Chlora Lindley-Myers represented by Brent Kabler (MO); Marlene Caride represented by Ralph Boeckman (NJ); Barbara D. Richardson represented by Hermoliva Abejar (NV); Judith L. French represented by Rodney Beech (OH); Cassie Brown represented by Rachel Cloyd (TX); Nathan Houdek represented by Rebecca Rebholz (WI); and Allan L. McVey represented by Jeannie Tincher (WV). Also participating was: Erica Weyhenmeyer (IL).

1. **Adopted its Dec. 3, 2021, and 2021 Fall National Meeting Minutes**

Director Severinghaus said the Task Force adopted a revision to its 2022 charges on Dec. 3, 2021, via e-vote. She said the Task Force added back the charge to make recommendations regarding incorporating artificial intelligence (AI) abilities in the NAIC Market Information Systems (MIS), with a completion date of the 2022 Summer National Meeting.

Ms. Cloyd said the minutes did not reflect that Texas abstained from the vote. She requested that Texas’ abstention be noted in the minutes.

Mr. Flott made a motion, seconded by Mr. Swan, to adopt the Task Force’s Dec. 3, 2021, minutes with the addition that Texas abstained from the e-vote (Attachment). The motion passed unanimously.

Mr. Kreiter made a motion, seconded by Ms. O’Connell, to adopt the Task Force’s Nov. 23, 2021, minutes *(see NAIC Proceedings - Fall 2021, Market Information Systems (D) Task Force)*. The motion passed unanimously.

2. **Considered the AI Recommendations**

Director Severinghaus said the Task Force had a lengthy discussion during the 2021 Fall National Meeting and was not able to vote on the Market Information Systems Research and Development (D) Working Group’s report. She said she would give everyone as much time as needed to discuss the report and the feasibility of incorporating artificial intelligence (AI) analysis abilities in the MIS; whether the NAIC should proceed in that direction at this time; and, if so, what the first steps would be to put it in motion. She said the Task Force has until the Summer National Meeting to complete its charge, and it can meet again prior to the Summer National Meeting if necessary.

Director Severinghaus said that during the 2021 Fall National Meeting, Texas expressed concerns on whether the charge properly belongs with the Task Force rather than with the Big Data and Artificial Intelligence (H) Working Group. She said Texas also said they were concerned about the cost and availability of NAIC resources to implement the recommendations in the report. Director Severinghaus said industry representatives generally agreed with the idea of analyzing the quality of the current MIS data and the potential of applying AI analysis techniques to the data but expressed concerns regarding the collection of transactional level data. She said that consumer representatives supported the report’s recommendations of assessing the quality of the current MIS data and increasing the amount of data collected to make the use of AI on the market information systems as effective as possible.

© 2022 National Association of Insurance Commissioners
Andrew Pauley (National Association of Mutual Insurance Companies—NAMIC) said the report was comprehensive and laudable. He said, however, that adopting it in full was premature due to other workstreams the NAIC is working on. He also said it was not clear that AI models are superior to the current analysis being done. He noted the paper said AI analysis methods could lead to many false positives. He said that would consume the time and resources of state insurance regulators and companies. He cautioned about confidentiality and cybersecurity if transactional data is collected.

Mr. Kabler said the paper outlined a process that begins with reviewing and correcting the current data in the MIS, and then refining analysis methods. After those steps, it could then be decided if incorporating AI is necessary. He said it is possible to minimize false positives as long as are aware of the potential.

Ms. Cloyd suggested that only the first two recommendations be adopted rather than all five and then ask the NAIC for feedback on whether AI methods could take the place of current methodologies. She noted that the third recommendation is to incorporate AI in the MIS after the first two recommendations are completed. She said more feedback is needed before taking that step. Mr. Kabler suggested revising the third recommendation to consider incorporating AI methods rather than incorporating various promising AI modes of analysis. Ms. Cloyd said it was better to just adopt the first two requirements because it is clear the data currently collected is insufficient for AI and there is no proof of concept. Mr. Kabler said that there are different levels of AI techniques and that it would not be too much to incorporate less sophisticated AI technologies that would do the same thing as traditional statistical and quantitative techniques. Ms. Cloyd said Texas is not opposed to improving analysis techniques but is concerned about the time and resources necessary to pursue all five requirements in the report.

Director Severinghaus said that the efficient use of time and resources is at the top of mind for everyone. She said unless we have hard data to show what the cost would be to pursue all five requirements, everyone is just guessing at the cost in time and resources. She asked if the NAIC has looked at AI before.

Randy Helder (NAIC) said the NAIC did investigate AI techniques for financial regulation, but this is the first time it has been considered for market regulation. He said the financial regulators involved did provide input to the Market Information Systems Research and Development (D) Working Group as it prepared this report.

Ms. Weyhenmeyer suggested referring the report back to the Working Group to consider the costs. She also noted that since the chair and vice chair are new to the Task Force this year, it may be helpful to allow Commissioner Michael Conway (CO) an opportunity to also provide some input.

Director Severinghaus agreed and said the Task Force would not take a vote on the report during this meeting.

Mr. Kabler said the Working Group met on March 16 in regulator-to-regulator session, pursuant to paragraph 3 (specific companies, entities, or individuals) and paragraph 6 (consultations with NAIC staff members) of the NAIC Policy Statement on Open Meetings, and took the following action: 1) reviewed the current NAIC projects and Uniform System Enhancement Request (USER) forms submitted to the Working Group; 2) adopted a USER request to create a personalized information capture system (PICS) event to notify subscribers on a recurring basis of outstanding waiver and extension requests; 3) adopted a request to add a new Complaints Database System (CDS) coverage type code for telehealth; and 4) considered a request from the Market Analysis Procedures (D) Working
Group to add the lender-placed insurance and disability insurance Market Conduct Annual Statement (MCAS) data into the Market Analysis Review System (MARS). Finally, Mr. Kabler noted the Working Group completed its work on the 2020 MIS data analysis and recommendations.

Mr. Kreiter made a motion, seconded by Ms. Ailor, to adopt the report of the Market Information Systems Research and Development (D) Working Group. The motion passed unanimously.

4. Received an Update on MIS Projects and USER Forms

Chris Witt (NAIC) said the NAIC Information Technology (IT) team has completed the migration to the cloud. He said that the MCAS system has now opened and is receiving filings and that all the MCAS i-Site+ reports used by state insurance regulators will be available by the filing deadline. Mr. Witt said the Market Actions Tracking System (MATS) web service should be completed by the end of the first quarter. Mr. Witt said the next major project to be started is the separation of the MCAS system from the Financial Data Repository (FDR) system.

5. Adopted the MIS Data Analysis Metrics and Recommendations

Director Severinghaus said that during the 2021 Fall National Meeting, the Task Force was not ready to adopt the analysis and recommendations for improving the data in the MIS databases and that the Working Group only provided a preliminary report. She said the MIS data analysis metrics results are now ready to be reviewed along with the Working Group’s recommendations. She said that while the meeting materials only provide an aggregated look at the MIS data, each of NAIC member jurisdictions’ market analysis chiefs (MACs) will be sent the specific results for their jurisdictions.

Mr. Kabler said the MIS data analysis report evaluates the quality of the data in the MIS databases to identify issues with the data and alert states of those issues and ways to improve the quality. He said there are no recommendations based on the 2020 analysis. He noted that the report evaluates the timeliness, accuracy and completeness of the MIS data submitted by each jurisdiction through tests that are summarized in the report. He noted as an example that the accuracy of complaint data can be measured by comparing the disposition code with whether the complaint was coded as confirmed or unconfirmed.

He said the detailed reports were sent to each jurisdiction’s MAC.

Ms. Rebholz made a motion, seconded by Ms. Abejar, to adopt the MIS data analysis report (Attachment). The motion passed unanimously.

Having no further business, the Market Information Systems (D) Task Force adjourned.
The Market Information Systems Research and Development (D) Working Group Review of Artificial Intelligence Techniques in Market Analysis

Executive Summary

This report fulfills the Market Information Systems Research and Development (D) Working Group charge to evaluate the potential benefits of artificial intelligence (AI) in relation to market analysis. After careful consideration, the Working Group concluded that there may be possible benefits to improve analysis techniques. Several caveats are discussed as well. AI may not be suitable for data currently available to state insurance regulators. In addition, some of the techniques perform complex data mining operations, which can produce results that lack a clear interpretation. Lastly, AI techniques are designed for, and many require, very large datasets. As such, AI should be contemplated in the context of a long-range plan, beginning with repairing known issues with existing data, and employing more rigorous traditional statistical techniques to assess predictive accuracy of analytical tools. Subsequently, state insurance regulators can consider the acquisition of data appropriate to AI.

Introduction

In early 2021, the Market Information Systems Research and Development (D) Working Group received a charge from the Market Information Systems (D) Task Force to explore possible applications of artificial intelligence (AI) methods in market analysis. An early difficulty encountered by the Working Group is that the term “AI” itself has a variety of contested meanings. In addition, private sector entities have adopted the term as a marketing concept and inappropriately apply the label to products simply as a selling point. As such, the term has come to acquire a variety of meanings and is an “essentially contested concept.”¹

At its most general level, the term “AI” implies machine capacities that mimic or are analogous to processes of human reasoning and learning and entail some degree of machine autonomy in which learning occurs without significant human intervention. Beyond this general description, the Working Group did not feel that an attempt to define the term more strictly would be fruitful. Rather, the term is employed simply as a shorthand reference for a collection of various techniques that algorithmically seek patterns in data that are predictive of some future outcome. Common methods include machine learning, neural networks, and decision tree analysis. These processes are often contrasted to the traditional hypothetical-deductive methods of model specification associated with classical statistics. However, there does not appear to be a bright line of demarcation so that a particular technique can be firmly fixed within either category.

In addition, the Working Group focuses on what is commonly called “narrow AI,” in which machine algorithms are employed for narrowly defined and limited tasks. More advanced systems, called

¹ The term “essentially contested concept” was coined by W.B. Gallie in the seminal presentation to the Aristotelian Society in 1956.
“general AI,” possess generalized autonomous problem-solving capacities that are comparable to the processes of the human brain, and they are able to adapt to novel situations or information (Macnish et al., 2019).

It is important to emphasize the ways in which AI modeling techniques contrast to the standard scientific model employed in classical or traditional statistics:

Classical Statistics: Method of hypothetical-deductive reasoning in which hypotheses are clearly and narrowly specified prior to data testing, often with a prior understanding of the underlying causal nature of the relationships between variables. **Purpose:** To further causal understanding.

AI: Often employs a type of “data mining” in which a machine pattern-seeking algorithm is released “into the wild” to identify possible correlations between variables that may be predictive of some independent variable. Hypotheses are not specified prior to data analysis, and the algorithm may very well identify correlations that would not have occurred to an analyst and whose causal relationship is constructed post-hoc (to the degree that AI users are concerned with causality at all). **Purpose:** Predict future outcomes or events.

The difference between these two approaches is not trivial, and significant disagreements about the advantages and disadvantages of AI remain. It is of note that AI did not emerge principally from university statistics departments, but rather from the field of computer science. Many statisticians remain skeptical of the techniques and have offered up a variety of caveats for their use. For example, recently the American Statistical Society (ASA) reacted to the “reproducibility crisis” afflicting some disciplines that have discovered, with much consternation, that a large volume of published works could not be replicated. The concern was that increasingly less rigorous statistical methods departing from the hypothetical-deductive approach were becoming more prominent in a variety of fields, undermining confidence on research findings. Remarking on departures from a rigorous hypothetical-deductive approach with “data mining” and like methods in which pattern seeking is largely ceded from a researcher to a machine, the ASA warned about improper inferences that might result from such techniques. The ASA centered its discussion on the p-value, related to the probability that some observed relationship occurred by chance alone. A low p-value is often employed to minimize the probability that chance relationships will be misinterpreted as a relationship that is a meaningful, non-random outcome:

“Conducting multiple analyses of the data and reporting only those [analyses] with certain p-values…renders the reported p-values essentially uninterpretable. Cherry-picking promising findings, also known by such terms as data dredging, significant chasing, significance questions, selective inference and a ‘p-hacking’ leads to a spurious excess of statistically significant results…and should be vigorously avoided” (Wasserstein & Lazar, 2016).

To translate the ASA’s statement into more easily understood and less technical terms, the ASA is warning against false positives in which an analysis produces random or chance correlations between items that are not meaningfully related—that is, where a chance relationship is mistaken for a true causal relationship. That AI largely jettisons causal understanding as its primary goal (to the degree that causality is a concern at all) increases the probability that statistical results may be uninterpretable in any meaningful sense. This is clearly evinced by the increasing debate among state insurance...
regulators and insurers regarding the meaning of statistical relationships appearing in predictive models that lack intuitive or, in many cases, even plausible explanations. See Appendix A for further discussion of the ASA statement.

The discussion above is not intended to sway state insurance regulators one way or the other with respect to AI. The purpose is simply to proffer some caveats shared by many statisticians. A final caveat is the AI techniques were developed to analyze very large data sets consisting of millions of records and possibly thousands or tens of thousands of variables. It is said to have an advantage in that algorithms can perform a large volume of analyses across different constellations of variables in a way that would be highly impractical employing traditional (and manual) model building. For small data sets, such as the limited data currently available to market analysts, it is unclear whether the expense associated with developing AI techniques can be justified, nor whether AI is at all superior to traditional model building methods. This is not an unimportant point and is discussed in more depth elsewhere in this recommendation.

Current Status of Market Analysis

Quantitative market analysis relies on just a handful of data sources:

The Complaint Database System (CDS): The NAIC compiles complaints against insurers received by state insurance regulators. Thus, each state has access to a national-level database. Complaint indices are “normalized” by expressing the volume of complaints to premium, compared with the overall industry total.

The Regulatory Information Retrieval System (RIRS): Regulatory actions in relation to insurance entities are captured in the RIRS database. Actions range from intervention in financially troubled entities to violations of producers and insurance carriers. Each record identifies the cause of the action, as well as any orders, fines, or restitution amounts. The RIRS database is currently being substantially revised to capture significantly more detail.

The Market Actions Tracking System (MATS): The MATS database captures information pertaining to market conduct exams, as well as actions short of exams. Data captured include area of scrutiny (claims, underwriting, etc.) and the outcome of the market action (order, fine, etc.). By matching MATS actions with RIRS, additional detail about the nature of the violation can be assessed.

The Market Conduct Annual Statement (MCAS): The MCAS was developed to capture data with the primary purpose of assessing an insurer’s market performance and identify potential market irregularities. The data focus primarily on claims handling and underwriting, and data are scrutinized with respect to claims processing times and denials, nonrenewal and cancellation practices, and overall turnover in a book of business. Data are captured by line and coverage. To date, MCAS data are collected for life and annuities, private automobile, homeowners, health (both on and off the federally facilitated marketplace [FFM]), long-term care (LTC), lender-placed insurance, disability income, and private flood.
Miscellaneous Data Sources: Some financial data has been incorporated into market information systems. Insurers that are under financial stress, or that rapidly expand into or contract out of a line of business, or that exhibit high defense or other adjudication costs, may be subjected to additional analysis. While financial indicators are only indirect or proxy measures of potential market issues, and by themselves may have no clear market-based interpretation, interpretation within the context of a host of other indicators may be reflective of the present of a market-relevant issue.

The NAIC, in conjunction with state insurance regulators, has developed a broad scope “market score” that incorporates much of the data referenced above, which is made available to regulators via the Market Analysis Prioritization Tool (MAPT). One such data are “normalized” by the premium volume and scope of company operations as necessary. For example, several RIRS-based ratios express the volume of RIRS actions in relation to premium volume, the number of states in which they have significant premium, and a composite ratio that incorporates both premium and scope. Each ratio is given a score, and their contribution to the overall score weighted according to their perceived predictive relevance. For example, financial ratios are accorded significantly less weight than complaints, as their relationship to market misconduct is considered more speculative and indirect.

An important caveat is that predictive analytics is not well developed in market regulation. The ratios employed in the Market Analysis Review System (MARS) have not been subjected to rigorous statistical tests that demonstrate their analytic utility. While some work has been performed in this regard, such work is significantly hampered by a dearth of appropriate data. For example, future RIRS actions are often employed as the dependent variable (the outcome of interest to be predicted). However, this presents all manner of statistical challenges. While it is certainly reasonable to use prior outcomes (past RIRS actions) to predict future outcomes (the RIRS actions to be predicted), employing RIRS actions as both dependent and independent variable introduces significant complexities in the interpretation of any observed relationship between the two. One can imagine, for example, that the use of RIRS actions in market analysis invites greater scrutiny to a given insurer, and that in turn generates future regulatory actions precisely because the company received additional scrutiny. Companies that have no “prior offenses” fail to attract regulatory scrutiny, so that any infractions may escape regulatory action for precisely that reason. This problem is certainly not insurmountable, but it must be explicitly recognized in any model building exercise, whether with AI or with more conventional statistical techniques.

In general, the paucity of rich data sources has significantly hampered the adoption of more rigorous analytical techniques. To return to RIRS, these data are not rich sources of detailed information. Schematics are not well designed “from the ground up.” Essential data are missing, such as line of business.

Any consideration of AI or any other analytical techniques must necessarily view the utility of such techniques within the context of available data. Regardless of the validity of a technique in general, it will have limited utility if data are themselves limited. Any recommendation to employ such methods must therefore at the same time recommend a thorough review of available data.

Importantly, results of quantitative analysis are always treated as merely suggestive and tentative and are regarded as at most a precursor to more qualitative analysis. It currently is employed to prioritize
entities that may merit additional scrutiny and to narrow focus on a much more limited subset of companies out of a larger pool of companies. It therefore primarily prioritizes limited regulatory resources.

State insurance regulators avail themselves of the formal analytical processes adopted by the NAIC. Quantitative or “baseline” analysis identifies entities with anomalous indicators that significantly depart for industry-wide values. A “level 1” analysis may be pursued, in which an analyst devotes additional scrutiny to such things as complaint trends, common reasons complaints are lodged against an insurer, similarities in RIRS actions, etc. If concern still remains (or additional concerns are identified) subsequent to level 1 analysis, a structured level 2 analysis may be performed. A level 2 analysis requires a much greater commitment of time and resources. For example, rather than just manually reviewing complaint data to identify patterns, an analyst may manually review actual complaint documentation to garner a more detailed understanding of the nature of complaints.

As a preliminary to the following discussion, AI/statistical analysis may have two primary functions within the context of the current market analysis structure:

1. More accurately identify companies that merit the additional expenditure of resources necessary to perform the more labor-intensive level 1 and level 2 analyses. Analysis processes that more efficiently identify problem companies for this purpose are by definition more effective and more effectively target resources by avoiding “false positives” (for lack of a better word).

2. Potentially, AI methods could assume many of the functions that are currently performed manually. For example, many of the pattern-seeking analysis performed by analysts in a level 1 review could conceivably be more efficient if automated. Potentially, AI could identify patterns that might elude a human analysis. A very advanced level of AI could perhaps assume complex analysis involved with manually reviewing complaint files and documents. However, while the possibility is raised here, it is not further pursued. That level of AI suitable for tasks may not even exist as yet, or if it does, it may be so specialized that it may not be available to state insurance regulators. Even if available, the likely enormous costs themselves would render them highly impractical.

Whether such AI exists, is available at a practical cost, and can actually out-perform more conventional analyses are questions that the Market Information Systems Research and Development (D) Working Group is simply unable to satisfactorily address. The Working Group merely suggests initially limiting the scope of ambitions to a few methods that are commonly, if not universally, recognized as AI, such as machine learning or neural networks. More expansive or ambitious efforts may result in a fruitless search for “unobtanium.”

Given very large data sets, well beyond what is currently available to market analysts, AI may have clear advantages to more conventional approaches. The slow, methodical, hypothetical-deductive...
approach that forms the core of conventional statistics may have advantages in terms of generating valid causal conclusions. However, AI may have certain advantages with respect to confronting the enormity of modern data. As AI is well-suited to performing much more expansive analysis and pattern-seeking routines over vast quantities of data, it may well identify predictive patterns that would have escaped conventional analysis or that are counterintuitive such that some hypotheses may never have occurred to an analyst employing a standard hypothetical-deductive approach. However, there are distinct disadvantages as well, and they are shared by other approaches often termed “data mining.” The fact is that patterns may lack an intuitive meaning, and the manner in which such patterns are identified and render interpretation may be unclear. Additionally, patterns may generate numerous “false positives,” apparent patterns or correlations that are purely random and possess no meaning or any real predictive power whatsoever. This is not fatal for AI techniques, but it introduces much in the way of caveats and requires significant remedial measures to be employed. This problem is so significant that it merits a much fuller discussion in a separate section below.

The Work of Market Information Systems Research and Development (D) Working Group

The Working Group solicited input from various parties. Two parties delivered presentations to the Working Group:

1. On June 16, 2021, the Working Group discussed a presentation regarding AI methods currently being explored by NAIC staff to predict which insurers are likely to experience financial stress, including insolvency. Beginning in January 2021, an outside consulting group was retained to develop both AI as well as more traditional statistical techniques to construct predictive models of insolvency risk. The efforts are ongoing at the time of writing. Presenters believed the methods were promising and could significantly advance financial risk surveillance. Among AI and statistical models explored were decision tree analysis, generalized linear models (GLMs), and logistic regression.

2. During the Working Group’s June 21, 2021, meeting, Birny Birnbaum (Center for Economic Justice—CEJ) encouraged the Working Group to adopt a long-term perspective and develop a multiyear plan to explore AI techniques that might be beneficial to market analysis. He also indicated that state insurance regulators have to date failed to acquire granular transactional data that could be exploited by AI methods to afford a much more robust surveillance system to reduce consumer harm to the extent possible.

After the meeting, the Working Group convened a subject-matter expert (SME) group with the intent of creating a draft recommendation to be submitted to the Working Group.

Recommendations

The Working Group recommends developing a long-range plan, in a sequence of five steps.

I. Existing Market Analysis Data

As noted above, market analysis suffers from a paucity of detailed data. Some movement in expanding data and remedying deficiencies was made with a complete redesign of the RIRS data, which will facilitate analysis of factors related to an entity sanctioned by state insurance regulators. If
implemented, RIRS will also capture much more detailed data related to the specific misconduct that garnered a regulatory response. The RIRS proposal is currently under discussion with the Market Information Systems (D) Task Force, to which Working Group reports.

The remainder of available data also suffers from significant deficiencies. Insurers employ a variety of definitions to produce MCAS data. Even such a fundamental concept as a “claim” is reported differently by different insurers, making market-wide analysis challenging. For example, the MCAS defines a claim in the conventional sense of “a demand for payment.” Investigation by the Missouri Department of Commerce & Insurance (DCI) has determined that the definition is interpreted in wildly divergent ways across the industry that simply makes meaningful comparison impossible and renders key market indicators or ratios largely meaningless. Some insurers set up a claim on a coverage that is reasonably related to the facts of the incident as relayed by a claimant. Other insurers set up all possible coverages on a policy as a claim in their internal systems regardless of whether those coverages might be reasonable implicated in a claim. As might be imagined, those carriers have significantly higher ratios of claims closed without payment. This and other issues remain with the MCAS and significantly impair market analysis.

Recommendation 1: Survey currently available market analysis data, and identify substantive deficiencies based on the nature and substance of the data elements collected. Ensure that all data are consistently reported across insurers to the degree practical and ensure adherence to definitions of data elements.

II. Existing Methods of Market Analysis

Current quantitate methods of market analysis are large based on ad hoc and intuitive understanding of how data indicators might be related to market misconduct. For example, one of the earliest indicators developed are complaints received by state insurance regulators regarding insurers. It is probably not unreasonable to interrogate complaint data to identify trends over time, as well as just overall complaint volume, to attempt to identify potential problems in a market. Similar indices consider the volume of RIRS actions, as well as the gravity of infractions in terms of potential consumer harm. It is the opinion of many state insurance regulators that such indicators possess a rational relationship to market misconduct and are relevant to identify market actors that might benefit from a heightened level of regulatory scrutiny.

While the Working Group agrees with the rationale behind such market indicators, analytical tools have not to date been subjected to more rigorous statistical methods to clearly identify the predictive power and assess their relative importance or weight. For example, the MAPT, maintained by the NAIC and available to state insurance regulators, employs overall insurer scores based on various indicators. However, the weight of these indicators employed in the score were assigned by state insurance regulators based on experience, as well as assessment of whether a likely relationship have a clear rational meaning. For example, complaint ratios are weighted significantly more heavily than things like financial indicators. The Working Group believes subjecting the scoring system to rigorous statistical analysis could yield significant benefits in identifying problem market actors.
Recommendation 2: In conjunction with recommendation 1 (assess data quality), state insurance regulators should adopt a much more rigorously statistical approach to identify the predictive power of market scoring systems, assess how each variable should be weighted in terms of its unique contribution to productiveness, and drop those that lack analytic utility. In addition, effort should be made to integrate data into a single overall analysis. For example, the MAPT does not incorporate MCAS data, which is typically subject to a separate analysis. The Working Group believes that a “piecemeal” approach is likely less effective than a more integrated approach.

It is noted that the current state of data will likely prove limiting and that such efforts may not make much progress until additional data are made available (such as the proposed revisions to the RIRS data, currently subject to NAIC discussion).

III. Available Approaches: Exploring AI

In additional to more traditional statistical tools, such as various types of regression models and correlation analyses, AI may offer additional benefits. Some commercial statistical packages have incorporated AI methods. The statistics package SAS, which is widely used in both the private and public sectors, makes some AI techniques available in its standard statistical module.3 In addition, SAS has developed a module called Enterprise Miner, which incorporates both data mining and some lower-level AI routines. (For those familiar with the terms, it performs such things as decision-tree analysis, neural networks, and like forms of analyses). Other modules make machine learning available—a potentially powerful type of analysis that modifies prior predictive algorithms as new data become available.

Recommendation 3: In undertaking recommendation 2, incorporate various promising AI modes of analyses, as well as traditional statistical modeling. Constantly assess the precision of model outcomes relative to objectives such as identifying potential market issues.

IV. Qualitative Analysis

The current model of market analysis incorporates a multistage hierarchical structure. First, quantitative analysis such as that produced by the MAPT identifies potential market problems and narrows focus to entities that appear to exhibit potential areas of regulatory concern. Having narrowed down the focus of analysis to a much more limited pool of candidates, market analysts in the states engage in more manual or qualitative analysis of additional information sources. For example, an analyst may review a selection of complaint files to identify additional patterns of market behavior to better understand their nature and substance.

3 SAS is markets in “modules,” each consisting of a different suite of capabilities that can be tailored to a user’s need. For example, “base SAS” provides standard data handing programs. A “statistics module” provides a wide-ranging set of analytical routines.
As noted above, AI techniques such as text analysis could potentially expand such exercises and improve the identification of concerning patterns at a deeper level, as well as assess ways to improve the efficiency of other qualitative tasks.

Recommendation 4: Assess ways AI can improve both the efficiency of qualitative analysis and facilitate pattern recognition across larger volumes of textual evidence, including most especially complaints, but perhaps other textual sources. For example, the “level 1” analysis formalized in NAIC market system may include a review of the “management discussion and analysis” of the financial annual statement.

V. Longer-Range Planning

As noted above, data mining and AI techniques were developed primarily as tools to analyze large volumes of data. For data past a certain magnitude, including especially those containing many hundreds or even thousands of variables, the traditional hypothetical-deductive cornerstone that is the cornerstone of traditional statistical inference may be ill-suited as well as cost-prohibitive in terms of time and resources. If the purpose is solely prediction as opposed to causal understanding, AI can fine-tune predictive algorithms by testing relationships that may be unlikely to occur to a statistician employing causal modeling.

Currently, such large volumes of data are unavailable to market analysts, though they could potentially be obtained. More granular data pertaining to claims, underwriting, and other areas of company operations are routinely collected via the “standard data requests” adopted as a supplement to the Market Regulation Handbook and commonly employed in market conduct exams.

However, AI and data mining can churn up counterintuitive statistical relationships that defy ready interpretation. In addition, it is likely to detect proxy relationships that are not understood. Proxy relationships, in which a third variable is substituted for an underlying variable of interest, are often employed in statistical models. This is often due to the accessibility or cost of obtaining data of the actual causal variable of interest. However, when employed in traditional statistical analysis, the nature of the relationship between the proxy variable and the actual variable of interest is generally well understood. This is not true of AI techniques that employ or resemble data mining.

The techniques are also likely to generate some number of purely chance relationships, where a correlation is generated by random chance. Inferential statistics seek to minimize mistaking a chance relationship for a meaningful association. Typically, the use of a p-value requirement of 0.05 or less limits the probability of accepting a random relationship to no more than 5% of occurrences. However, a 5% threshold means that over time, false, or chance relationships will be misinterpreted of a true correlation.

This fact is not fatal for the use of AI in market analysis, but it does represent a strong caveat for those employing the techniques, at least those that share elements with data mining. Careful interpretations of p-values should recognize an increased possibility of false positives. Observed relationships should be assessed and validated over time to ensure correlations are stable. In addition, once relationships
are identified via AI and found useful, standard statistical models should also be employed to test whether different techniques yield superior predictive power. Additional discussion of caveats is presented in the appendix.

That said, there is much potential of AI in market analysis, *assuming that additional, more granular, data are available*. As noted, such techniques are most suited for large datasets whose very size would make a standard statistical approach impractical just given the sheer number of possible correlations available for testing.

Recommendation 5: Systematically explore potential data sources suitable for AI techniques, with an eye for discovering patterns and relationships in relation to some well-defined outcome one is attempting to predict. This may be identifying entities that may merit additional regulatory scrutiny in a way that is currently done by the less sophisticated methods employed in the MAPT or with the MCAS. Larger volumes of data, such as the standard data requests, can be subjected to AI to identify problematic claims handling, underwriting, and other insurer practices.

Summary of Recommendations

Recommendation 1: Survey currently available market analysis data, and identify substantive deficiencies based on the nature and substance of the data elements collected. Ensure that all data are consistently reported across insurers to the degree practical, and ensure adherence to definitions of data elements.

Recommendation 2: In conjunction with recommendation 1 (assess data quality), state insurance regulators should adopt a much more rigorously statistical approach to identify the predictive power of market scoring systems, assess how each variable should be weighted in terms of its unique contribution to productiveness, and drop those that lack analytic utility. In addition, effort should be made to integrate data into a single overall analysis. For example, the MAPT does not incorporate MCAS data, which is typically subject to a separate analysis. The Working Group believes that a “piecemeal” approach is likely less effective than a more integrated approach.

Recommendation 3: In undertaking recommendation 2, incorporate various promising AI modes of analyses, as well as traditional statistical modeling. Constantly assess the precision of model outcomes relative to objectives, such as identifying potential market issues.

Recommendation 4: Assess ways AI can improve both the efficiency of *qualitative* analysis and facilitate pattern recognition across larger volumes of textual evidence, including most especially complaints, but perhaps other textual sources. For example, the “level 1” analysis formalized in NAIC market system may include a review of the “management discussion and analysis” of the financial annual statement.

Recommendation 5: Systematically explore potential data sources suitable for AI techniques, with an eye for discovering patterns and relationships in relation to some well-defined outcome one is attempting to predict. This may be identifying entities that may merit additional regulatory scrutiny in...
a way that is currently done by the less sophisticated methods employed in the MAPT or with the MCAS. Larger volumes of data, such as the standard data requests, can be subjected to AI to identify problematic claims handling, underwriting, and other insurer practices.
Appendix: Caveats

Recently, some fields of scientific inquiry have experienced much consternation and hand-wringing due to the so-called “replicability crisis” resulting from the realization that many studies published in top-tier journals could not be replicated. In 2015, Open Science Collaboration published research into the replicability of psychological studies. Of the 100 studies that were subjected to testing, replications yielded statistically significant results in only 36% compared to 97% of the original publications (Open Science Collaboration, 2015). Similar reproducibility issues were found in other fields.

Attention was directed at quantitative methods, particularly those made possible by modern computing power. Researchers can run countless variations of models, including multiple different variables, cross-effects, and other tweaks, until they eventually produce positive or statistically significant results. The inevitable outcome of the lack of rigor of such methods is that many chance correlations will be mistaken for meaningful relationships.

Think of it this way. The probability of obtaining all heads from 10 flips of a fair coin is 1/1024. So, if a researcher actually performed the experiment 1,024 times and obtained 10 heads at least once, it would obviously be improper to infer that the coin was a two-headed coin. Without knowledge of the total number of trials, one might reject the “null hypothesis” that the coin is fair, and results would be “statistically significant” with a p-value of (1/1,024) = 0.00098, well below the 0.05 maximum threshold to establish statistical significance. But the true p-value can only be calculated with knowledge of the total number of trials prior to obtaining the recorded result, such that the true p-value is well above the maximum threshold.

There are no allegations of willful misconduct so much as careless and sloppy methods, producing much introspection about how statistics methods are taught to scientists at colleges and universities. The problem is so significant that the following year, the American Statistical Association (ASA) released a statement regarding misuse of p-values and practices known as “p hacking” or “data dredging.” A letter from the ASA is reprinted below, with a link to the full statement (used with permission).

Really, this is a warning for state insurance regulators not to adopt a casual attitude about apparent relationships turned up by the methods. When such methods are employed, modelers should be on constant guard against mechanical interpretations of model outputs. It is important to fully understand what is going on in the “black box” of an AI algorithm, the results of all statistical tests performed, and the totality of processes generating final results.

A high number of false positives that prompt regulatory follow-up can risk draining away regulatory resources going down blind allies.
AMERICAN STATISTICAL ASSOCIATION RELEASES STATEMENT ON STATISTICAL SIGNIFICANCE AND P-VALUES

Provides Principles to Improve the Conduct and Interpretation of Quantitative Science

March 7, 2016

The American Statistical Association (ASA) has released a “Statement on Statistical Significance and P-Values” with six principles underlying the proper use and interpretation of the p-value [http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN]. The ASA releases this guidance on p-values to improve the conduct and interpretation of quantitative science and inform the growing emphasis on reproducibility of science research. The statement also notes that the increased quantification of scientific research and a proliferation of large, complex data sets has expanded the scope for statistics and the importance of appropriately chosen techniques, properly conducted analyses, and correct interpretation.

Good statistical practice is an essential component of good scientific practice, the statement observes, and such practice “emphasizes principles of good study design and conduct, a variety of numerical and graphical summaries of data, understanding of the phenomenon under study, interpretation of results in context, complete reporting and proper logical and quantitative understanding of what data summaries mean.”

“The p-value was never intended to be a substitute for scientific reasoning,” said Ron Wasserstein, the ASA’s executive director. “Well-reasoned statistical arguments contain much more than the value of a single number and whether that number exceeds an arbitrary threshold. The ASA statement is intended to steer research into a ‘post p<0.05 era.’”

“Over time it appears the p-value has become a gatekeeper for whether work is publishable, at least in some fields,” said Jessica Utts, ASA president. “This apparent editorial bias leads to the ‘file-drawer effect,’ in which research with statistically significant outcomes are much more likely to get published, while other work that might well be just as important scientifically is never seen in print. It also leads to practices called by such names as ‘p-hacking’ and ‘data dredging’ that emphasize the search for small p-values over other statistical and scientific reasoning.”

The statement’s six principles, many of which address misconceptions and misuse of the p-value, are the following:

1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
Adopted by the Market Information Systems Research and Development (D) Working Group, Oct. 14, 2021

© 2021 National Association of Insurance Commissioners

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

The statement has short paragraphs elaborating on each principle.

In light of misuses of and misconceptions concerning p-values, the statement notes that statisticians often supplement or even replace p-values with other approaches. These include methods “that emphasize estimation over testing such as confidence, credibility, or prediction intervals; Bayesian methods; alternative measures of evidence such as likelihood ratios or Bayes factors; and other approaches such as decision-theoretic modeling and false discovery rates.”

“The contents of the ASA statement and the reasoning behind it are not new—statisticians and other scientists have been writing on the topic for decades,” Utts said. “But this is the first time that the community of statisticians, as represented by the ASA Board of Directors, has issued a statement to address these issues.”

“The issues involved in statistical inference are difficult because inference itself is challenging,” Wasserstein said. He noted that more than a dozen discussion papers are being published in the ASA journal The American Statistician with the statement to provide more perspective on this broad and complex topic. “What we hope will follow is a broad discussion across the scientific community that leads to a more nuanced approach to interpreting, communicating, and using the results of statistical methods in research.”

About the American Statistical Association

The ASA is the world’s largest community of statisticians and the oldest continuously operating professional science society in the United States. Its members serve in industry, government and academia in more than 90 countries, advancing research and promoting sound statistical practice to inform public policy and improve human welfare. For additional information, please visit the ASA website at www.amstat.org.

For more information:

Ron Wasserstein

Citations

<table>
<thead>
<tr>
<th>Request Type</th>
<th>Key</th>
<th>Request Summary</th>
<th>Date Created</th>
<th>Current Status</th>
<th>Detailed Description</th>
<th>Estimated Effort</th>
<th>Last date Updated</th>
<th>Request Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request</td>
<td>MKTG-597</td>
<td>MCAS Reports 2021 - Annual updates</td>
<td>10/14/2021</td>
<td>Done</td>
<td>Update legacy MCAS reports for 2021 Annual filing</td>
<td>6/8/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKTREGREQ-67</td>
<td>USER Form 10071 - Redesign and enhance iSITE reports using interactive data visualization and add data analytics</td>
<td>7/16/2021</td>
<td>Closed</td>
<td>State Ahead – Market Regulation Self-Service Dashboard The purpose of this project is to create Tableau dashboards to replace current iSite+ market regulation tools and applications to provide visual representation of the data. This includes reports containing regulatory actions (RIRS data), complaint data (CDS data), MCAS data, financial data, producer data, and antifraud data. Finally, this project will help ensure NAIC staff continues to provide the necessary support to the NAIC members for the ongoing development of MCAS blanks and market analysis.</td>
<td>6/14/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKTREGREQ-65</td>
<td>USER Form 10047 - Add option to display data by group code.</td>
<td>7/16/2021</td>
<td>Closed</td>
<td>State Ahead – Market Regulation Self-Service Dashboard The purpose of this project is to create Tableau dashboards to replace current iSite+ market regulation tools and applications to provide visual representation of the data. This includes reports containing regulatory actions (RIRS data), complaint data (CDS data), MCAS data, financial data, producer data, and antifraud data. Finally, this project will help ensure NAIC staff continues to provide the necessary support to the NAIC members for the ongoing development of MCAS blanks and market analysis. This project will replace the Financial MAPT - -The Tableau version of the Financial MAPT will likely include filtering by group code. - The Market Conduct Data Improvements (MAPT) Phase II State Ahead project addresses the ability to review MCAS data by group.</td>
<td>6/14/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKTREGREQ-44</td>
<td>USER form 10051 - Implement MATS service in SBS</td>
<td>2/12/2021</td>
<td>In Progress</td>
<td>"What:" Implement MATS Web Service in SBS to Provide SBS Examination module integration for automated submission of information to MATS. "Who:" Regulators that use the SBS Examination module "When:" As soon as possible "Why:" SBS users are duplicating effort by entering information into 2 separate systems that are not in sync "Request Date:" 4/19/2014</td>
<td>10/22/2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKTREGREQ-66</td>
<td>USER Form 10065 - Provide functionality to access and download data from NAIC systems.</td>
<td>7/16/2021</td>
<td>In Progress</td>
<td>State Ahead – Enterprise Data Asset Management Phase II The next phase of the data governance and data warehouse initiative will leverage the lessons learned in Phase I to build out the architecture and tools needed to increase NAIC and NIPR's ability to make data available to regulators in a timely and cost effective manner and improve our data capabilities. The new AWS data platform will consist of three layers: a Data Lake (raw data) layer to contain all data in its original format, a lightly curated layer where data cleansing and some data structure may be applied to data sets (more geared towards data exploration and machine learning, and a business data layer where data will be highly structured (more geared towards data access and usage by state regulators and NAIC applications). Data stewardship will be applied to the remaining financial and market regulation data sets and those data sets will be loaded to the Enterprise Data Platform for use by other State Ahead projects. Additional data policies, standards, and processes will be created and enhancements to the data architecture and toolsets will be implemented.</td>
<td>6/14/2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request ID</td>
<td>Description</td>
<td>Date</td>
<td>Priority</td>
<td>Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-50</td>
<td>Separate MCAS from FDR</td>
<td>7/27/2020</td>
<td>Prioritized</td>
<td>As Market Regulation staff we would like to have MCAS running in a system separate from FDR so that we can more quickly and easily modify and test MCAS changes requested by regulators as we move to production. Our current system setup requires that multiple departments coordinate and depend on each other. Those departments include Market Regulation, Financial Services, and ITG.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-33</td>
<td>USER Form 10054 - Support for Attachments: Facilitate submission of supporting documentation.</td>
<td>9/5/2019</td>
<td>Prioritized</td>
<td>"What:" Describing WHAT the user is requesting. "Who:" Describing WHO this request will impact "When:" Describing WHEN this request is required (if there’s a deadline) "Why:" Describing WHY this request is needed, including why it’s important to more than one jurisdiction. This should also include what happens if this request is not approved. "Request Date:" 4/9/2014 As per the MIS Task Force State Survey Project Action Plan #23: Support for Attachments: Facilitate submission of supporting documentation. (ex: orders) USER Form 10021: Allow entry of multiple state regulatory actions in RIRS. (added 3/20/13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-34</td>
<td>USER Form 10075 - MAPT Add Overall Score, National Score etc. to MAPT</td>
<td>9/5/2019</td>
<td>Prioritized</td>
<td>"What:" The Market Analysis Prioritization Tool (MAPT) currently provides three years (CY, PY & PY1) of the underlying data relied upon for each of the main component and subcomponent scores and the CY Overall Score, National Score and State Score. To assist in trending analysis of the data during the baseline process, we would also find it useful if the MAPT reports included the current year and previous two years of the Overall Score, National Score, and State Score, as well as the main component and sub-component scores. This request is similar to USER Form 10067 regarding the creation of an MCAS Ratio Trend Report; "Who:" Cheryl Hawley - AZ "When:" As soon as possible "Why:" Making technical changes to the MAPT reports or creating a new MAPT Scoring Report will allow users to have three years of scoring data available through one source rather than having to save the PY & PY1 data while it is available on iSite+ and then merging it with the CY data for analysis of trends and patterns to identify potential areas for improvement and/or concern. "Request Date:" 11/9/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-37</td>
<td>USER Form 10077 - MAPT allow a user to select a new function "All Policy" to kick off all (18) reports.</td>
<td>9/5/2019</td>
<td>Prioritized</td>
<td>"What:" The data available in this report (Market Analysis Market Share Search Criteria) is not available through any other search tool at the level of detail (Policy Type). Please see attached Excel file. Please give me a call if you need more information. Either have an ‘All Policy Types’ option or have the option to highlight more than one policy type (which is available in other reports). "Who:" Ibrahim Al-Hajiby (MN) - All state regulators who access MAPT "When:" Describing WHEN this request is required (if there’s a deadline) "Why:" I currently have to go run 18 different reports and compile them manually which is time consuming and increases chances of error. "Request Date:" 4/24/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-43</td>
<td>MIS Metrics available for Regulator self-service</td>
<td>9/24/2019</td>
<td>Prioritized</td>
<td>We are developing reports that have been generated manually using queries in the past. The vision is to place these reports in iSite+ by data source and allow the State Regulators access as needed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Request ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14/2022</td>
<td>Business Request</td>
<td>MKTREGREQ-50</td>
</tr>
<tr>
<td>6/11/2021</td>
<td>Regulator Request</td>
<td>MKTREGREQ-33</td>
</tr>
<tr>
<td>6/11/2021</td>
<td>Regulator Request</td>
<td>MKTREGREQ-34</td>
</tr>
<tr>
<td>11/15/1900</td>
<td>Regulator Request</td>
<td>MKTREGREQ-37</td>
</tr>
<tr>
<td>10/28/2021</td>
<td>Business Request</td>
<td>MKTREGREQ-43</td>
</tr>
<tr>
<td>Request ID</td>
<td>Form Number</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MKTREGREQ-46</td>
<td>10081</td>
<td>Make MCAS data available in MAPT</td>
</tr>
<tr>
<td>CIS-391</td>
<td>10083.1</td>
<td>Add Subject Codes to CIS Complaints by Code</td>
</tr>
<tr>
<td>MKTREGREQ-63</td>
<td>10083.2</td>
<td>Add subject codes to iSite Reports</td>
</tr>
<tr>
<td>MKTREGREQ-64</td>
<td>10083.3</td>
<td>Develop a new CDS Summary Report.</td>
</tr>
</tbody>
</table>

Note: For regulatory requests, ensure that the associated form numbers and dates are accurately recorded and included in the table entries.
<table>
<thead>
<tr>
<th>MKTREGREQ-118</th>
<th>USER Form 10084 - Create PICS events for MCAS waiver or extension is initiated or updated but not closed</th>
<th>10/25/2021</th>
<th>Prioritized</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name:</td>
<td>Ginny Ewing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td>816.783.8649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email address:</td>
<td>gewing@naic.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Role:</td>
<td>NAIC staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User State:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Description of the Request:** Currently a PICS event exists that notifies subscribers when an MCAS waiver or extension is initiated or updated. This is a single notification. This request is to create a new PICS event, or possibly enhance the current event, to notify subscribers on a regular basis. The recommended default for the frequency of the notification should be weekly; however, the ability to modify the frequency to a specific number of days would be desirable.

- **This request will impact the following system(s):** ["MCAS (Market Conduct Annual Statement)", "PICS"]

- **This request will impact the following people(s):** This request will directly impact the state insurance regulator staff who are responsible for reviewing and taking action on MCAS filing waiver and extension requests. It will also indirectly benefit the insurance companies with more timely responses to their requests.

- **Any other important details:** The following recommendation was adopted by the Market Information Systems (D) Task Force during its March 22, 2021 meeting: “Create a new PICS event that notifies subscribers of pending waiver and extension requests each week.”

- **Requested timeline:** This request can be completed at any time.

<table>
<thead>
<tr>
<th>MKTREGREQ-119</th>
<th>USER Form 10085 - Identify and track telehealth in complaint system</th>
<th>10/25/2021</th>
<th>Prioritized</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name:</td>
<td>Cheryl Hawley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td>602.364.4994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email address:</td>
<td>cheryl.hawley@difi.az.gov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Role:</td>
<td>Working Group member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User State:</td>
<td>Arizona</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Description of the Request:** Recommend adding a way to identify telehealth to help states track complaints involving telehealth coverage of health care services. Potential definition for the new code: Health service that uses video calling and other technologies to help you see your doctor or other health care provider from home instead of at a medical facility.

- **This request will impact the following system(s):** ["CDS (Complaint Database System)"]

- **This request will impact the following people(s):** Those responsible for supporting the state back-offices, such as the NAIC for SBS and Vertafore for Sircon For States, will need to add the new code. State regulators responsible for entering complaint data will need to aware of the new code and how to use it.

- **Any other important details:** This request was entered by Ginny Ewing on behalf of Cheryl Hawley.

- **Requested timeline:** This request can be completed at any time. However, the sooner it is implemented, the sooner the benefits will be realized.
<table>
<thead>
<tr>
<th>Request ID</th>
<th>Form Number</th>
<th>Description</th>
<th>Date Submitted</th>
<th>Date Reviewed</th>
<th>Date Approved</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKTREGREQ-45</td>
<td>USER form 10080.1 - Update action date on systems participating report</td>
<td>Preliminary Review</td>
<td>2/12/2021</td>
<td>7/9/2021</td>
<td>Regulator Request</td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-61</td>
<td>USER form 10080.4 - Define RIRS data dictionary</td>
<td>Preliminary Review</td>
<td>7/9/2021</td>
<td>7/9/2021</td>
<td>Regulator Request</td>
<td></td>
</tr>
<tr>
<td>MARS-318</td>
<td>MARS Rewrite EPMO Project</td>
<td>Preliminary Review</td>
<td>12/12/2019</td>
<td>2/18/2022</td>
<td>Business Request</td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-48</td>
<td>USER form 10074 - Allow user comments to be added to level 1 review</td>
<td>Preliminary Review</td>
<td>2/12/2021</td>
<td>6/11/2021</td>
<td>Regulator Request</td>
<td></td>
</tr>
<tr>
<td>MKTREGREQ-36</td>
<td>USER Form 10043 - MARS - import average industry loss and expense ratio to MARS Level 1 question 11a and 11b</td>
<td>Preliminary Review</td>
<td>5/15/2018</td>
<td>10/25/2021</td>
<td>Regulator Request</td>
<td></td>
</tr>
</tbody>
</table>
Reason code for surprise billing on health insurance plans and self-insured health plans offered by employers starting in 2022 and were filed to the insurance departments on or after January 1, 2022, when the No Surprise Act became a federal law.

This request will impact the following system(s): ["CDS (Complaint Database System)"]

This request will impact the following people(s): This request could potentially impact other states who use complaint tracking databases and any third party vendors and IT personnel who assist in implementing changes to those databases. It would impact this working group and any other group that plays a part in the review, oversight and modification to CDS forms and the technological side of it. It could be impactful to other government agencies, constituents, medical providers, federal stakeholders, etc. who would be interested in the data that this change could potentially allow states to capture.