Modeling concepts, hyperparameter tuning, and telematics

June 2020
Today’s agenda

- Review some modeling concepts
- Intro to XGBoost
- Hyperparameter optimization
- Telematics loss modeling best practices
Parts of a model
Modeling Intro

Parts of a Model

- Scoring formula
- Objective function
- Optimization process
- Data
Parts of a Model

Scoring formula

: Ordinary least squares regression

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \]

: Generalized linear model

\[y = g^{-1}(\beta_0 + \beta_1 x_1 + \beta_2 x_2) \]

: GLM with log link function

\[y = e^{\beta_0} \times e^{\beta_1 x_1} \times e^{\beta_2 x_2} \]

: Decision tree model

If \(x_1 < \beta_1 \) then \(y = \mu_0 \)

If \(x_1 \geq \beta_1 \) then:

If \(x_2 < \beta_2 \) then \(y = \mu_1 \)

If \(x_2 \geq \beta_2 \) then \(y = \mu_2 \)
Parts of a Model
Objective function

What is the goal of the model?
“Best model” needs to be well defined
Must define the measure and the direction

- Ordinary Least Squares regression -> minimize mean squared error
- Generalized Linear Model -> maximize likelihood
- Decision tree -> minimize Gini impurity
Parts of a Model

Optimizing process

This is where the math can get complex!

Differential calculus, numerical methods, matrix mathematics may be employed.

GLM (and ordinary least squared regression)
 -> Maximum likelihood estimation
 -> Iteratively Reweighted Least Squares – much faster, doesn’t estimate likelihoods

Neural nets
 -> Gradient descent
Data Partitions
Data Partitions
Train, Validate and Test Data

Data scientists frequently split their data into 3 subsets: Train, Validate, Test

- For determining parameters estimates (i.e., “train” the model).
- For tuning hyperparameters to improve model performance
- “Untouched” data to provide an unbiased evaluation of final model
Data Partitions
Cross-Validation

- Another approach is to split data into Train and Test
- Use cross-validation for tuning hyperparameters

\[\frac{(S_1 + S_2 + S_3 + S_4)}{4} = \hat{S} \]
Hyperparameters
Hyperparameters
What is a hyperparameter?

: Scoring formula for GLM with log link function

\[y = e^{\beta_0} \times e^{\beta_1 x_1} \times e^{\beta_2 x_2} \]

: \(\beta_0, \beta_1 \) and \(\beta_2 \) are parameters

: Hyperparameters are parameters outside of the scoring formula that affect
 o Model performance
 o Model complexity
Hyperparameters

Tweedie Power Parameter

- Tweedie GLMs have a hyperparameter called the Tweedie power parameter (p)
- Tweedie power parameter is important because it affects deviance, which affects the significance of variables in the model
- We can find the optimal value of p by testing different values of p to find the greatest likelihood

```r
set.seed(11)
test.data <- rtweedie(n=200, power=1.46, mu=260, phi=100)
tweedie.profile(test.data ~ 1,
    p.vec=seq(1.2, 1.8, by=0.2),
    do.plot=TRUE)
```
Hyperparameters

Loss capping

- Higher layers of loss can be uninformative due to their volatility
- Capping losses at the optimal level can improve model accuracy on uncapped losses
- The large loss threshold is a hyperparameter

- I used the grid search method to find a good level to cap losses
- I used 5-fold cross-validation to measure 2 different objective functions to measure how good each loss capping levels performed
- After determining where to cap losses, I estimated the Tweedie power parameter.
XGBoost
What is XGBoost?

: “eXtreme Gradient Boosting”

: “The algorithm of choice for many winning teams of machine learning competitions” according to the XGBoost website

Why actuaries and data scientists may be interested in XGBoost:

- Supports Tweedie, Poisson and gamma objective functions
- Credibility-like parameter shrinkage
- Finds predictive complex interactions
- Automated variable selection
XGBoost

XGBoost Attributes

: Scoring formula comprised of simple If-Then-Else statements

 o **Prediction = 0**

 If $v1 < B1$ **then** add $e1$ **to** prediction
 If $v1 \geq B1$ **and** $v2 < B2$ **then** add $e2$ **to** prediction

: Objective functions include

 o squared error
 o squared log error
 o hinge
 o logistic
 o aft
 o pairwise
 o poisson
 o gamma
 o tweedie

 o L1 regularization
 o L2 regularization

: Optimization function

 o For creating the trees, Recursive Binary Splitting is default, and other options available
 o Various options for boosting
XGBoost
What is Boosting?

Step 0

Step 1

Step 2
XGBoost
A few important hyperparameters in XGBoost

: **eta** – Learning rate. Prevents overfitting
: **gamma** – Minimum loss reduction to make a split
: **max_depth** – Maximum depth of trees
: **alpha** – L1 regularization removes weaker variables
: **lambda** – L2 regularization shrinks estimates closer to the mean

X1 < 3?
- Yes: $92
- No: X2 < 15?
 - Yes: $110
 - No: $147
Tuning Hyperparameters
Tuning Hyperparameters

Grid Search

- We could use Grid search
 - If we use 10 values for each of the 5 parameters
 - Grid search would run the regression 100,000 times
 - If the model takes 5 minutes to converge then grid search will take 347 days of compute time
 - Grid search allocates a lot of effort to explore every combination of hyperparameters
Tuning Hyperparameters

Random Search

: We could use Random search
 o In many instances, random search performs about as well as grid search

: Random Search approach
 1. Select reasonable ranges for selected hyperparameters
 2. Randomly select combinations of values for hyperparameters
 3. Test combination
 4. Repeat
Example Tuning

For a recent project, I tuned 8 hyperparameters for an XGBoost model.

Top graph:
- Four of the hyperparameters are plotted.
- x-axis = trial number
- y-axis = hyperparameter values

Bottom:
- x-axis = trial number
- y-axis = objective function value
Takeaways

Summary:

- Algorithms like XGBoost have features that actuaries will be interested in using:
 - Supports Tweedie, Poisson and gamma objective functions
 - Credibility-like parameter shrinkage
 - Finds predictive complex interactions
 - Automated variable selection

- Hyperparameter tuning is important for some algorithms
 - Easy to understand methods for hyperparameter tuning exist
 - Some more advanced algorithms are very complex and can find optimal hyperparameters much faster than simpler methods
Telematics loss modeling
Telematics Loss Modeling Best Practices

Predicts future insurance loss
Accounts for traditional factors
Developed using credible data
Customer friendly
PREDICTS FUTURE INSURANCE LOSS
Defining risk variables iteratively

Generate hypothesis
- Logic
- Telematics expertise

Collect behaviors
- Prototype, pilot, and deploy data capture

Evaluate loss correlation
- Merge with Insurance data
- Define variables

Develop score and file
- Predictive models
- Support regulators

FEEDBACK FROM STAKEHOLDERS

IMPLEMENTATION
ANALYSES
DEPLOYMENT
PREDICTS FUTURE INSURANCE LOSS

Mileage is good

Source: Arity analysis

© 2020 Arity. All rights reserved. Proprietary and Confidential.
Behavior is better

Source: Arity analysis

© 2020 Arity. All rights reserved. Proprietary and Confidential.
CREDIBLE DATA

Data volume, accuracy, and duration of collection matter

Probability that indicated factors are directionally wrong

Source: Arity analysis on Bodily Injury coverage

© 2020 Arity. All rights reserved. Proprietary and Confidential.
PREDICTS FUTURE INSURANCE LOSS

Insights built on proxied collisions could make the rating plan worse

Source: Arity analysis

© 2020 Arity. All rights reserved. Proprietary and Confidential.
Thank You