Modeling concepts, hyperparameter tuning, and telematics
June 2020

© 2020 Arity. All rights reserved. Proprietary and Confidentia



. Review some modeling concepts
, . Intro to XGBoost
Today's agenda

. Hyperparameter optimization

. Telematics loss modeling best practices
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Parts of a model



Modeling Intro
Parts of a Model

- Scoring formula

- Objective function

- Optimization process

- Data
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Parts of a Model
Scoring formula

. Ordinary least squares regression y = Bo+ f1x1 + Baxy

. Generalized linear model y = g By + B1x1 + Prx3)
- GLM with log link function y = ePo x ef1*1 x gh2x2

- Decision tree model If x; < By then y = u,

If x; = f, then: If x, < B, theny =y,
Ifx, > B, theny = u,
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Parts of a Model
Objective function

- What is the goal of the model?
- "“Best model” needs to be well defined
- Must define the measure and the direction

- Ordinary Least Squares regression -> minimize mean squared error

- Generalized Linear Model -> maximize likelihood

- Decision tree -> minimize Gini impurity
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Parts of a Model
Optimizing process

This is where the math can get complex!

Differential calculus, numerical methods, matrix mathematics may be employed.

GLM (and ordinary least squared regression)
-> Maximum likelihood estimation
-> [teratively Reweighted Least Squares — much faster, doesn't estimate likelihoods

Neural nets
-> Gradient descent
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Data Partitions



Data Partitions

Train, Validate and Test Data

Data scientists frequently split their data into 3 subsets: Train, Validate, Test

. For determining parameters estimates (ie, “train” the model).

. For tuning hyperparameters to improve model performance

- “Untouched” data to provide an unbiased evaluation of final model Test
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Data Partitions
Cross-Validation

. Another approach is to split data into Train and Test
. Use cross-validation for tuning hyperparameters

“Test”
Train

Train

Train

(S;+S,+S,+S,)/4=8
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Hyperparameters



Hyperparameters
What is a hyperparameter?

- Scoring formula for GLM with log link function
y = eﬁo X eﬁ1x1 X eﬁzxz

. Bo, B1 and B, are parameters

. Hyperparameters are parameters outside of the scoring formula that affect
o Model performance

o Model complexity
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Hyperparameters
Tweedie Power Parameter

. Tweedie GLMs have a hyperparameter called the Tweedie power parameter (p)

. Tweedie power parameter is important because it affects deviance, which affects the
significance of variables in the model

set.seed=11
. . test.data <-rtweedie(n=200, power=1.46,mu=260,phi=100)
- We can find the optimal value of p by tueedic. profile(test.data - 1, ’
. . . p.vec=seq(1.2, 1.8, by=0.2),
testing different values of p to find the do.plot=TRUE)
greatest likelihood
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Hyperparameters
Loss capping

- Higher layers of loss can be uninformative due to their volatility
. Capping losses at the optimal level can improve model accuracy on uncapped losses

. The large loss threshold is a hyperparameter

- | used the grid search method to find a good level [
to cap losses \/\

- | used 5-fold cross-validation to measure 2 L
different objective functions to measure how
good each loss capping levels performed

Performance

. After determining where to cap losses, | \ |
estimated the Tweedie power parameter. i J
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XGBoost



XGBoost
What is XGBoost?

. "eXtreme Gradient Boosting”

. “The algorithm of choice for many winning teams of machine learning competitions” according
to the XGBoost website

- Why actuaries and data scientists may be interested in XGBoost:
o Supports Tweedie, Poisson and gamma objective functions
o Credibility-like parameter shrinkage
o Finds predictive complex interactions
o Automated variable selection
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XGBoost
XGBoost Attributes

- Scoring formula comprised of simple If-Then-Else statements

o Prediction = ©

If vl <B1 then add el to prediction
If v1>=B1 and v2< B2 then add e2 to prediction

. Objective functions include

o squared error o logistic o poisson L
o L1 regularization
o squared log error o aft o gamma + o
) o : o L2 regularization
o hinge o pairwise o tweedie

. Optimization function

o For creating the trees, Recursive Binary Splitting is default, and other options available
o Various options for boosting
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XGBoost
What is Boosting?

JAC

/ Square

Step 0
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XGBoost
A few important hyperparameters in XGBoost

. eta — Learning rate. Prevents overfitting

- gamma — Minimum loss reduction to make a split

- max_depth — Maximum depth of trees

- alpha = L1 regularization removes weaker variables
- lambda — L2 regularization shrinks estimates closer to the mean
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Tuning Hyperparameters



Tuning Hyperparameters

Grid Search

We could use Grid search
If we use 10 values for each of the 5 parameters
Grid search would run the regression 100,000 times
If the model takes 5 minutes to converge then grid search will take 347 days of compute time

Grid search allocates a lot of effort to explore every combination of hyperparameters

el
el
el
el &
el
el

21



Tuning Hyperparameters
Random Search

- We could use Random search
o In many instances, random search performs about as well as grid search

- Random Search approach
1. Select reasonable ranges for selected hyperparameters
7. Randomly select combinations of values for hyperparameters
3. Test combination
4. Repeat
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Tuning Hyperparameters
Example Tuning

. For a recent project, | tuned 8
hyperparameters for an XGBoost model

Top graph

- Four of the hyperparameters are plotted
. X-axis = trial number

. y-axis = hyperparameter values

Bottom

. X-axis = trial number

. y-axis = objective function value
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Takeaways
Summary

- Algorithms like XGBoost have features that actuaries will be interested in using:
o Supports Tweedie, Poisson and gamma objective functions
o Credibility-like parameter shrinkage
o Finds predictive complex interactions

o Automated variable selection

. Hyperparameter tuning is important for some algorithms
o Easy to understand methods for hyperparameter tuning exist

o Some more advanced algorithms are very complex and can find optimal hyperparameters
much faster than simpler methods
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Telematics loss modeling



Telematics Loss Modeling Best Practices

B &

Predicts future Accounts for Developed using Customer friendly
insurance loss traditional factors credible data
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PREDICTS FUTURE INSURANCE LOSS
Defining risk variables iteratively

Generate
hypothesis
. Logic

. Telematics
expertise

IMPLEMENTATION
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Collect
behaviors

. Prototype, pilot,

and deploy
data capture

ANALYSES

FEEDBACK FROM
STAKEHOLDERS

Evaluate
loss correlation

. Merge with

Insurance data

: Define variables

DEPLOYMENT

Develop
score and file

. Predictive models
: Support regulators
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PREDICTS FUTURE INSURANCE LOSS
Mileage is good

Traditional

. Rating Factors
= \ Traditional +
& Verified Mileage
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Decile of Ratio Prediction
Source: Arity analysis
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PREDICTS FUTURE INSURANCE LOSS
Behavior is better

1.00
/

Loss Ratio Relativity

Source: Arity analysis
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CREDIBLE DATA

Data volume, accuracy, and duration of collection matter
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PREDICTS FUTURE INSURANCE LOSS

Insights built on proxied collisions could make the rating plan worse
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Decile of Ratio of Prediction

Proxy Score + Traditional Traditional Rating Plan ~ #=++++++ Ideal
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