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GLM vs. GAM?

Generalized Linear Model (GLM) )
g(M) = XB
gM)=n
E(y)=n=g7"(n)
g(M) = by + by Xy + b X,... + b, X

P — g()is the

link function
Generalized Additive Model (GAM)

y ~ Exponential Family(u,etc.)
u=E(y)
g(u) = bg + fl(xq) + f(xy) + ... + f(x))

Key Difference: GLMs add constant factors of variables.
GAMs add functions of variables.
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Linear Basis Model

If the relationship between the inputs and the target is non-
linear, we use linear basis function models to express
relationship.

These models assume that the target is a linear combination of
a set of p+1 basis functions.

Y; = Bo+ By 01(x1) + Br 02(x3) + ... + By Bp(xp)

A basis is a set of basis functions @ ; that will be combined to
produce f(x):

p
F@ =) B8
=1
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Polynomial Basis Example

f(xX) = Bol + Bix + Box? + P3x®

Income. o ' "Page 5

Motorcycle Accident Data

Simple transformations don’t work well here!

Acceleration

Polynomial Regression (cubic) Natural Splines Kernel Smoother

SAT RS

Lowess Smoothing Splines GAM
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Measurements of head acceleration/deacceleration in a simulated

motorcycle accident after impact, used to test crash helmets. Page 6




A GAM Basis

A GAM is a sum of smooth functions or smooths
p
Y=o+ ) 500+ e
j=1
where @;(x) = s;(x)
€; = errorterm

Note: There are many smooth functions we can use as
basis functions

In R, we use
* library (mgcv) #The mgcv package
* gam() #The glm() equivalent for GAMs

Note: mgev stands for mixed GAM computational vehicle
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Mathematical Splines
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Cubic Splines Interpolation is piecewise interpolation
with a different cubic equation between each pair of
data points. These points are also called "knots.”
Cubic interpolation creates a smooth fit at the knots.
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Wiggly Functions: Splines

0.00 0.25 0.50 0.75 1.00
X

Splines are functions composed of simpler functions

K Resultant spline is a sum of

weighted basis functions,
s(x) = Z Bicby (x) evaluated at the values of x.
k=1

K = number of basis functions.
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® These are the “knots.” They are the boundaries of
the piecewise splines that define the GAM.
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GAM Model

Weight basis functions = spline

0.00 0.25 0.50 0.75 1.00
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GAM Model Fitting

The GAM spline is the sum of all the underlying basis functions.
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Estimating GAM Betas

0.00 0.25 0.50 0.75 1.00
X

GAMs work well fitting wiggly data because there is
no single polynomial to fit this data.
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Estimating GAM Betas

10
S
=
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3,
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You can see how the individual basis functions are summed
to estimate the coefficients for each basis function.
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Penalized Log-Likelihood

L, = L(B) — 5 ABSB

Maximum Penalty to discourage
Likelihood as in overfitting -
the GLM wiggliness

The more “wiggly” the fit the more the model overfits and the
greater the penalty. The smoothing parameter A controls how
much penalty is paid for the wiggliness of the model. It balances
the fit of the data with the wiggliness or complexity of the model.
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Penalized Log-Likelihood

<« ANot Very Wiggly Fit
Small Penalty

A Wiggly Fit
Bigger Penalty
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Wiggliness Penalty

[reax = rsp = w
R

» The LHS represents the curvature or the rate of change
in the slope which is the 274 derivative.

* The second derivative is squared so that concave and
convex sections of the curve, which intuitively should
both contribute equally to "wiggliness" if they are the
same shape, both contribute equally to "wiggliness" if
they are the same shape.

+ The integral can be written as S7SfS, where S is a penalty
matrix created from basis functions.

» W stands for “wiggliness.” Zero wiggliness = Straight line
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HadCRUTH4 is a global temperature
dataset, providing gridded temperature

The Effect of A

H ad CRUT‘. ti m e se ri es averages for the hemispheres and the

globe as a whole.

A = 10000 A=1

Temeprature °C

1850 1900 1950 2000 1850 1900 1950 2000
Year

The smaller the A the wigglier the fit.
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Estimating A

There are two approaches:

1. Predictive: Minimize out-of-sample error
= AIC
* Mallow's C,
= GCV (Generalized Cross-Validation)

2. Bayesian: Put priors on our basis coefficients
= REML (Restricted Maximum Likelihood) produces
an unbiased ML estimator of the variance.
= REML is numerically stable
= R Function: gam(..., method = REML)

Zhang, X. (2015) A tutorial on restricted maximum likelihood estimation in linear regression and linear
mixed-effects model. Retrieved from https://people.csail. mit.edu/xiuming/docs/tutorials/reml.pdf
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GCV vs. REML

Data we to fita Gam to —
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Notice REML finds a A in a smaller range than does GCV!
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Wood, S. (2017). Generalized Additive Models: An Introduction with R, Second Edition. Page 20
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Maximum Wiggliness

We set basis complexity or "size"

This is maximum wiggliness, can be thought of as number of
small functions that make up a curve

Once smoothing is applied, curves have fewer effective
degrees of freedom (EDF)

EDF < k

The penalty function works to reduce some basis
coefficients to zero which reduces the Degrees of
Freedom (DF) to Effective Degrees of Freedom(EDF).

This similar to Regularization Penalties.
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Maximum Wiggliness

k must be large enough, the penalty does the rest

Large enough — space of functions representable by the basis
includes the true function or a close approximation to the true
function

Bigger k increases computational cost but need to make sure
your smooths are wiggly enough to capture behavior of your

data.

In mgev (written by Simon Wood), default values are arbitrary —
after choosing the model terms, this is the key user choice.

The software chooses A.

Must be checked! — gam.check() — Will help assess goodness of k.
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GAM Function in R

gam (formula,
family=gaussian(), #Y ~ Independent Variables
data=list (), #Model Data
weights=NULL, #Data weights
subset=NULL, #Optional Observations
na.action, #How to handle NAs
offset=NULL, #Model offset
method="GCV.Cp", #Method to Estimate Smoothing Parameter
optimizer=c("outer", "newton"), #For Smoothing Parameter
control=list(), #Control Variables
scale=0, #Indicates Scale Parameter is known
select=FALSE, Adds extra penalty to reduce beta to zero
knots=NULL, #Allows you to specify the knots
sp=NULL, #Vector to supply smoothing parameter
min.sp=NULL, #Lower boundary of smoothing parameter
H=NULL, #Quadratic penalty
gamma=1, #Increaseto >1 to produce smoother models
fit=TRUE, #Allows gam() to set up model
paraPen=NULL, #Optional list to specify penalties
G=NULL,in.out, #For an object call to a previous gam()
drop.unused.levels=TRUE, #Drop unused levels in fitting
drop.intercept=NULL, #To exclude an intercept term
discrete=FALSE, #Used for discrete methods in bam()

. #Passing further arguments

) Page 23

A Cornucopia of Smooths

The type of smoother is controlled by the bs (basis) argument
The default is a low-rank thin plate spline bs = 'tp’
Many others available

= Cubic splines bs = "cr’ (Best for big data)
= P splines bs = "ps'

= Cyclic splines bs ="cc' or bs = 'cp’ (cyclical data)
= Adaptive splines bs = 'ad'
= Random effect bs = 're'

= Factor smooths bs = 'fs' L TQ;‘;"’ITL”;‘S'

smooth term

= Duchon splines bs = 'ds'

= Spline on the sphere bs = 'sos'

= MRFs bs ='mrf’ (Markov Random Field)

= Soap-film smooth bs = 'so'

= Gaussian process bs ='gp' _J
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Conditional Distributions

A GAM is just a fancy GLM

Simon Wood & colleagues (2016) have extended the
mgcv methods to some non-exponential family
distributions

= bhinomial() = betar() (Beta)

= poisson() = scat() (Scaled T)

= Gamma() = gaulss() (Gaussian Location Scale)

= inverse.gaussian() = ziplss() (Zero Inflation Poisson)

= nb() (Negative Binomial) = twlss() (Tweedie Location Scale)

= tw() (Tweedie) = cox.ph() (Cox Model for Survival

= mvn() (Multivariate Normal) Analysis)

= multinom() (Multinomial) = gamals() (Gamma Location Scale)

= betar() (Beta) = ocat() (Ordered Categorical)
Note:

= Location Scale models allow you to fit the mean & variance
= Zero Inflation models allow you to fit zero values observations
Page 25

Smooth Interactions

Two ways to fit smooth interactions:

1. Bivariate (or higher order) thin plate splines
= 5(x,z bs="tp')
= |sotropic; single smoothness parameter for the smooth
= Sensitive to scales of xand z
= Same scale in both xand z

2. Tensor product smooths
= Separate marginal basis for each smooth, separate
smoothness parameters
= |Invariant to scales of xand z
= Use for interactions when variables are in different units
= te(x, z)

3. Pure Interactions
= ti() fits pure smooth interactions; where the main effects of x and
z have been removed from the basis
= s(x) +s(z) +ti(x, z)
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Factor Smooth Interactions

Two ways for factor smooth interactions:

1. by variable smooths
= entirely separate smooth function for each level of the
factor
= each has its own smoothness parameter
= centred (no group means) so include factor as a fixed
effect
= y~f+s(x, by=Hf)

2. bs = 'fs' basis
= smooth function for each level of the function
= share a common smoothness parameter
= fully penalized; include group means
= closer to random effects
= y~s(x, f, bs="fs")
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Model Checking

How do you know you have the right degrees of freedom?
gam.check()

GAMs are models too
How accurate your predictions will be depends on how good the model
is

right model wrong distribution heteroskedasticity

Variance is not constant

o Gaussian fit to data from a
t-distribution

dependent data wrong functional form

Time series has temporal
10 dependence not modeled

g

Wrong functional form

Page 28
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Model Fit Checklist

Many choices:

= Choice for k

= Choice for distribution family
= Choice for type of smoother
= Missing effects
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Setting Basis the Size of k£

Usual 1%t Step
= Set k equal to the number of covariates

= e.g. s(x, k=10) or s(x, y, k=100)
= People often choose the defaults
= But should be set to account for wiggliness

= Penalty removes "extra" wigglyness
o up to a point!

= (But computation is slower with bigger k)

Page 30
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Setting Basis the Size of k£

#Checking basis size
norm_model_1 <- gam(y_norm ~ s(x1, k=4) + s(x2, k =4), method = ‘REML)

gam.check(norm_model_1)
\ Compares a random set of

residuals to model residuals

Method: REML  Optimizer: outer newton and |ft_he associations are
larger in yours then there is

full convergence after 8 iterations. still unmodeled variation the
Gradient range [-0.0003467788,0.0005154578] model is not accounting for.
(score 736.9402 & scale 2.252304).

Hessian positive definite, eigenvalue range [0.000346021,198.5041].
Model rank = 7/ 7

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
k-index should be close to 1.0. This
E(Xl) 3.00 1.00 0.13 <2e-16 ***‘ is the randomization test. This says

s(x2) 3.00 2.91 1.04 0.83 k for s1 is too small. So, we need to
increase the k value for s1.

Signif. codes: @ '*%*' 0.001 " **" 0.01 'x' 0.05 '.' 0.1 ' ' 1
Note: edf equals the number of parameters needed to produce the curve. Page 31

Setting Basis the Size of k£

#Checking basis size
norm_model_2 <- gam(y_norm ~ s(x1, k=12) + s(x2, k =4), method = ‘REML)
gam.check(norm_model_2)

Method: REML  Optimizer: outer newton

full convergence after 11 iterations.

Gradient range [-5.658609e-06,5.392657e-06]

(score 345.3111 & scale 0.2706205).

Hessian positive definite, eigenvalue range [0.967727,198.6299].
Model rank = 15 / 15

Basis dimension (k) checking results. Low p-value (k-index<l) may
indicate that k is too low, especially if edf is close to k'.

k! edf k-index p-value
s(x1) 11.00 10.84 0.99 0.38

This says k for s2 is too small. So, we

‘S(XZJ 3.00 2.98 0.86 0.01 **‘ need to increase the k value for s2.
Signif. codes: @ "% ' 0.001 'xx' 0.01 'x' ©.05 '.' 0.1 ' ' 1
Page 32
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Setting Basis the Size of k£

#Checking basis size
norm_model_2 <- gam(y_norm ~ s(x1, k=12) + s(x2, k =12), method = ‘REML)
gam.check(norm_model_2)

Method: REML  Optimizer: outer newton

full convergence after 8 iterations.

Gradient range [-1.136192e-08,6.812328e-13]

(score 334.2084 & scale 0.2485446).

Hessian positive definite, eigenvalue range [2.812271,198.6868].
Model rank = 23 / 23

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k" edf k-index p-value
s(x1) 11.00 10.85 0.8 0.31 [ _
s(x2) 11.00 7.95  0.95  0.15 ings looks pretty good now.
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Checking Basis Size

s(x1) First Model s(x2)
050
g 025 5!
& 000 %j
2

k' edf k-index p-value
s(x1) 3.00 1.00 0.13 <2e-16 #*
s(x2) 3.00 2.91 1.04 0.83

s(x1) Second Model 5(x2)
2 1.0
gl g
£ 05
biviy b
B —————— T4 B e S ————
3 2 -1 0 1 2 3 2 El ) 1 2
~ X2

k' edf k-index p-value
s(x1) 11.00 10.84 0.99 0.38
s(x2) 3.00 2.98  0.86 0.01 *x

s(x1) Third Model S(x2)

3 2 1 0 1 2 3 0 1 2
1 x2
k" edf k-index p-value . . .
s(x1) 11.00 10.85  0.98  0.31 Continual improvement with the model
s(x2) 11.00 7.95  0.95  0.15 improvements we just made to k values.
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Model Diagnostic Plots
gam.check() plots

gam.check() creates 4 plots:

1. Quantile-quantile plots of residuals. If the model is
right, should follow 1-1 line

2. Histogram of residuals

3. Residuals vs. linear predictor

4. Observed vs. fitted values

gam.check() uses deviance residuals by default

Resids vs. linear pred.

Histogram of residuals Response vs. Fitted Values

Poisson Example

To understand p-values

= Simulate Poisson counts
= 4 known functions (left)
= 2 spurious covariates (runif() & not shown)

set.seed(3)
n <- 200

#simulate data

dat<- gamSim(1, n=n, scale=0.15, dist="poisson’, verbose = FALSE)
dat <- transform(dat, x4 = runif(n, 0, 1), x5 = runif(n, 0, 1), f4 = rep(0,
n), f5 = rep(0, n)) #x4, f4, x5, f5 are spurious

b <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3) + s(x4) + s(x5),data = dat,
family = poisson, method = 'REML', select = TRUE)

Turns on the double penalty

For gamSim datasets see: http:/web.mit.edu/~r/current/arch/i386_linux26/lib/R/library/mgcv/html/gamSim.html
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Poisson

fo
5

0.0

X4 0.050

0.025

£ 0.000

-0.025
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x3

Example

x2 x3
B 75
50
= 4 o
25
2
0.0
075  1.00 000 025 050 075 100 000 025
X1
X5 0.050 x6 0.050
0.025 0.025
5 0.000 & 0.000
-0.025 -0.025
-0.050 -0.050
075  1.00 000 025 050 075 1.00 0.00 025
X4

050 075 1.00
X2

050 075 1.00
x5
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summary(b)
Family: poisson
Link function: log
Formula:
y ~ s(x0) + s(x1) + s(x2) + s(x3) + s(x&) + s(x5)
Parametric coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 1.21758 0.04082 29.83 <2e-16 ***
Signif. codes: @ "#%' 0.001 "#%' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:

edf Ref.df cChi.sq p-value k = 10 is the default
s(x0) 1.7655088 9 5.264 0.0397 * degrees of freedom
s(x1) 1.9271040 9 65.356 <2e-16 #*x
s(x2) 6.1351414 9 156.204 <2e-16 #*x
s(x3) 0.0002849 9 0.000 0.4068 P-value for null hypothesis the
s(x4) 0.0003044 9 0.000 1.0000 true function is a flat function
s(x5) 0.1756926 9 0.195 0.2963
Signif. codes: @ "#%' 0.001 "*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.545 Deviance explained = 51.6%
-REML = 430.78 Scale est. =1 n = 200 page 38

38




1.

p values for smooths

p values for smooths are approximate:

They don't account for the estimation of Aj — treated as
known, hence p values are biased low — they are lower than
they should be.

Rely on asymptotic behavior — they tend towards being
right as sample size tends to oo

The above is also true for Lasso, Ridge, and Elastic Net
p-values.

Have the best behavior when smoothness selection is
done using ML, then REML.

. Neither of these are the default, so remember to use

method = "ML" or method = "REML" as appropriate
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AIC for GAMs

Comparison of GAMs by a form of AIC is an alternative
frequentist approach to model selection

Rather than using the marginal likelihood, the likelihood of the
B; conditional upon A; is used, with the EDF replacing k; , the
number of model parameters

This conditional AIC tends to select complex models, especially
those with random effects, as the EDF ignores )\j that are

estimated

Wood et al (2016) suggests a correction that accounts for
uncertainty in )\j

AIC = —2L(B) + 2tx(IVy)
\—y—l

Trace
Page 40

40




Concurvity in GAMs

= A generalization of co-linearity in GLMs

= The existence of nonlinear dependencies among predictor
variables or the existence of non-unique solutions of the
system of homogeneous equations.

= Occurs when a smooth term in a model can be approximated
by one or more of the other smooth terms in the model.

= Presence of concurvity in the data may lead to poor parameter
estimation (upwardly biased estimates of the parameters and
underestimation of their standard errors), increasing the risk of
committing type | error.

= Detected with a correlation integral: (z;=(x, y))
.
I(r)= e Z Iz —z| <)
Ia=1

Reference: Amodio, S., Aria, M., & D'Ambrosio, A. (2014). On Concurvity In Nonlinear And
Nonparametric Regression Models. Statistica, 74, 81-94. page 41

Concurvity Example

library(mgcv)

## Simulate data with concurvity...

set.seed(8);n<- 200

f2 <- function(x) {0.2 * x*1 * (10 * (1 - x))*6 + 10 * (10 * x)"3 * (1 - x)*10}
t <- sort(runif(n)) ## first covariate

## Make covariate x a smooth function of t + noise
x <- f2(t) + rnorm(n)*3

cor(x, t) #correlation = -0.4331803

## Simulate response dependent on t and x...
y <- sin(4*pi*t) + exp(x/20) + rnorm(n)*.3

## Fit model...
b <- gam(y ~ s(t, k=15) + s(x, k=15), method="REML")

## Assess concurvity between each term and “rest of model'
concurvity(b)

## Now look at pairwise concurvity between terms...

concurvity(b, full=FALSE) Page 42
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Interpreting the Results

Looking for Values > 0.80. These results pretty
look. The correlation between t & x is -0.4331803.

full = TRUE

worst

para sS(T)
1.064436e-24 0.60269087 0.6026909

s(%)

observed 1.064436e-24 0.09576829 0.5728602
estimate 1.064436e-24 0.24513981 0.4659564

full = FALSE

Sworst

para
para 1.000000e+00
s(t) 7.408676e-26
s(x) B8.983056e-25

iobserved

para
para 1.000000e+00
5(T) 7.40867Ge-26
s(x) 8.983056e-25

festimate

para
para 1.000000e+00
s(t) 7.408676e-26
s(x) B.983056e-25

[ N R |

1.
9.

6.
1.
2.

s{t)
.313872e-26
. 000000e+00
.02690%e-01

s{t)
.557228e-28
000000e+00
57682%e-02

s{t)
9938059e-29
0o0000e+00
4513588e-01

8.
6.
1.

1.
5.
1.

3
4.
1

S(XT
950649e-25
02690%9e-01
000000e+00

s(x)
704959a-32

000000e+00

s(x)
458685e-27
659564e-01
000000e+00 |

-
728602e-01

Determines how
much each smooth
is pre-determined
by the others.

Use this mode if the
first reveals a high
worst-case value to
identify where the
problem is. Shows
the degree to which
each variable is pre-
determined by each
other variable rather
than all the other
variables.
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A Problematic Example
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Shows the concurvity effects on the confidence intervals.

o concurvity(ml, full = TRUE)

para s(X1) s(x2)
0.84 0.84
0.22 0.57
0.28 0.60

worst [¢]
observed

estimate

Best Practice: Examine visual relationship between two variables.
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