

Random Forest Models

Sam Kloese, ACAS, CSPA P/C Rate Modeling Actuary December 21, 2021

NA C NATIONAL ASSOCIATION OF INSURANCE COMMISSIONERS

Introduction

- GLM's are industry standard
- The CASTF White Paper for Predictive Models is focused primarily on GLM's
- Some companies are filing with more sophisticated models
 - GAM Similar to GLM's, but with non-parametric "smoothed" terms
 - Tree Based Models Based on a collection of multiple decision trees
 - Neural Networks Mostly for generating scores based on images
- The NAIC model review team has reviewed the above model types without CASTF guidance
- The NAIC model review team would like to discuss how reviews should vary for these differing model types
- Today's focus is on Random Forests (a type of Tree Based Model)

Tree Based Models

- Models that can be represented as a decision tree or a collection of decision trees
- Types of Tree Based Models
 - Single decision Tree
 - "Bagged" Trees
 - Random Forest
 - Gradient Boosting Machine (XGBoost)
- Supervised Model
 - There is still a target variable
 - Classification: Renew/Non-renew, Claim/No Claim, Fraud/No Fraud
 - Regression: Frequency, Severity, Pure Premium
- Today's focus will be on Random Forest Models

Bagged Trees

- Most Tree-Based Models are an "ensemble" of models
- "Bagged" Trees are based on multiple trees
 - "Bagged" comes from "bootstrap aggregated"
 - Each tree is grown the same way
 - The difference is each tree is based on a different bootstrap sample
 - The same variables are considered in each tree
 - Final prediction is the average of each tree's prediction

- Random Forest
 - Each tree is based on a different bootstrap sample (still)
 - Additionally: Randomly chosen variables considered at each split
 - Each tree is grown the same way
 - Final prediction is the average of each trees prediction
- Advantages
 - Trees are substantially different
 - Each tree not based on the same sample
 - Each split not based on the same variables

- Example
 - 22 year old driver, no prior claims
 - 5 year old vehicle, \$15,000 vehicle
 - (\$10+\$15)/2 = \$12.5

- Interpretation gets difficult
 - Trees can get very deep
 - There can be 100's or 1,000's of trees
- Many GLM statistical tests no longer apply
- There are many hyperparameters
 - Selections may materially impact the model
 - Selections should be checked for reasonability

- Hyperparameters
 - Number of trees
 - Criteria on which to split
 - Bootstrap sample size (% of rows)
 - When to stop splitting
 - Max Tree Depth
 - Minimum Node Size
 - Max Leaf Nodes
 - Random Variables for each split (# of columns)

- Number of Trees
 - More trees makes the models more complex
 - The number of trees should be "tuned" to reduce error on either:
 - Separate test dataset
 - Out-Of-Bag data from training dataset
 - Different software may have different "early stopping" rules. Companies should be able to explain these rules.

12/21/202

Random Forest Challenges

- Interpretability
- Prone to Overfit
- Auditability

Challenges - Interpretability

• GLM's

- Produce one set of model output
- P-values provide a measure of statistical significance
 - Higher values can be prioritized for further review
- Log-link model coefficients are easy to understand
 - Beta < 0 is a discount, Beta > 0 is surcharge

- RF's
 - It is hard to digest the net impact of a collection of trees
 - Variable Importance Plots highlight which variables are relatively less important
 - Interpretability plots help understand the impact of a variable upon the model

Variable Triaging

- Variable Importance Plots
 - Provide a measure of which variables are relatively more important than others
 - Variables with low importance measures aren't necessarily unimportant, but they might be
 - Further scrutiny may be appropriate for variables with a low importance measure
 - Similar to looking at variables with high p-values in a GLM
- Types of variable importance
 - Gain: improvement in prediction accuracy from feature
 - Cover: Number of observations influenced
 - Frequency: Number of times used to split data

12/21/202

Interpretability Plots

- Partial Dependence Plots
 - Computes the marginal effect of a given feature on the prediction
 - Fixes the value of the predictor variable of interest, calculating the model prediction for each observation using the fixed value
 - Repeat for all values of the predictor variable

Policy Count — Predicted Value

18

12/21/202

Interpretability Plots

- Accumulated Local Effects
 - Better option in the case of correlated features
 - Calculates and accumulates incremental changes in the feature effects
 - Shows the expected and centered effects of a feature, like a coefficient in a GLM

Policy Count — Accumulated Local Effect

19

12/21/202

Interpretability Plots

- Shapely Additive Explanations
 - How much that feature moves the prediction away from the overall average prediction.

Feature increases predicted value higher than average value.

Feature decreases predicted value lower than average value.

12/21/202

Challenges - Prone to Overfit

- Review Hyperparameters
 - Number of trees should be large enough, but no larger
 - Look at plot to minimize OOB/Test Error or Deviance
 - Tree Complexity
 - Minimum node size should be set high enough for reasonable credibility
 - Rule of Thumb: Max depth of > 8 may be too high
 - Other hyperparameters should be disclosed and briefly commented on
 - Bootstrap sample size (% of rows)
 - Random Variables tried for each split (# of columns)
 - Criteria to split should match the model purpose (classification, regression)
- Review lift charts on test/holdout data

Challenges - Auditability

• GLM's

- Indicated factors are reproducible if you have the coefficients and link function
- Indicated factors can be stored in lookup tables
- Auditing model predictions could easily be done, even for a large number of risks

- RF's
 - Complete documentation means diagrams or if statements representing every component tree
 - Sample calculations would include input variable values, each tree's result, and the final result (average of the component trees)
 - A full audit of the logic would likely involve a significant amount of coding

Challenges - Auditability

- Random Forest Documentation
 - Exhibits could be made for spot-checking against tree documentation
 - Input Predictors
 - Individual Tree Predictions
 - Overall Model Prediction (average)

Sample Risk	Driver Age	Prior Claims	Vehicle Age	 Tree 1	Tree 2	Tree 3	•••	Model Prediction
1	16	0	5	 \$ 50.00	\$ 40.00	\$ 30.00		\$ 40.00
2	17	0	6	 \$ 49.00	\$ 39.20	\$ 29.40		\$ 39.20
3	18	0	2	 \$ 48.02	\$ 38.42	\$ 28.81		\$ 38.42
4	19	1	3	 \$ 47.06	\$ 37.65	\$ 28.23		\$ 37.65
5	20	0	9	 \$ 46.12	\$ 36.90	\$ 27.67		\$ 36.90

• However, auditing every prediction for a book of business would still be extremely difficult

Draft Random Forest Appendix For Discussion

- Sending out 2 versions
 - Track Changes: Highlights removed, changed, and added items to the GLM Appendix
 - Final: Updated with the tracked changes for easy reading
- Looking for feedback for future Random Forest reviews

References

- Basic Decision Tree Terminology
 - <u>https://medium.datadriveninvestor.com/the-basics-of-decision-trees-e5837cc2aba7</u>
- Theoretical Introduction to Random Forest
 - Introduction to Statistical Learning (Chapter 8 8.2.2)
 - https://web.stanford.edu/~hastie/ISLRv2_website.pdf
- Interpretable Machine Learning (Variable Importance and Interpretability Plots)
 - <u>https://us.milliman.com/-/media/milliman/pdfs/2021-articles/4-2-21-interpretable-machine-learning.ashx</u>
 - Book Club Presentation: <u>https://www.youtube.com/watch?v=-yMdTAIkewk</u>
- Tree-Based Models Book Club: <u>https://youtu.be/6UCbpAt4r9M</u>