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Introduction

• GLM’s are industry standard
• The CASTF White Paper for Predictive Models is focused primarily on GLM’s
• Some companies are filing with more sophisticated models

• GAM – Similar to GLM’s, but with non-parametric “smoothed” terms
• Tree Based Models – Based on a collection of multiple decision trees
• Neural Networks – Mostly for generating scores based on images

• The NAIC model review team has reviewed the above model types without CASTF 
guidance

• The NAIC model review team would like to discuss how reviews should vary for these 
differing model types

• Today’s focus is on Random Forests (a type of Tree Based Model)
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Tree Based Models

• Models that can be represented as a decision tree or a collection of decision trees
• Types of Tree Based Models

• Single decision Tree
• “Bagged” Trees
• Random Forest 
• Gradient Boosting Machine (XGBoost)

• Supervised Model
• There is still a target variable

• Classification: Renew/Non-renew, Claim/No Claim, Fraud/No Fraud
• Regression: Frequency, Severity, Pure Premium

• Today’s focus will be on Random Forest Models
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Tree Based Model

• Single Decision Tree
• Easy to Understand
• Mimics how people make 

decisions
• Easily interpreted
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Tree Based Model

• Single Decision Tree
• Easy to Understand
• Mimics how people make 

decisions
• Easily interpreted

• Classification returns a 
likelihood

• Regression returns a 
predicted amount
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Tree Based Model

• Terminology
• Nodes

• Root
• Sub-Node
• Parent/Child

• Splitting
• Branch
• Sub-Tree
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Bagged Trees

• Most Tree-Based Models are an 
“ensemble” of models

• “Bagged” Trees are based on 
multiple trees
• “Bagged” comes from “bootstrap 

aggregated”
• Each tree is grown the same way
• The difference is each tree is based 

on a different bootstrap sample
• The same variables are considered 

in each tree
• Final prediction is the average of 

each tree’s prediction
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Random Forest

• Random Forest
• Each tree is based on a different 

bootstrap sample (still)
• Additionally: Randomly chosen 

variables considered at each split
• Each tree is grown the same way
• Final prediction is the average of 

each trees prediction

• Advantages
• Trees are substantially different

• Each tree not based on the same 
sample

• Each split not based on the same 
variables
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Random Forest

• Example
• 22 year old driver, no prior claims
• 5 year old vehicle, $15,000 vehicle
• ($10+$15)/2 = $12.5
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Random Forest

• Interpretation gets difficult
• Trees can get very deep
• There can be 100’s or 1,000’s of 

trees

• Many GLM statistical tests no 
longer apply

• There are many hyperparameters
• Selections may materially impact 

the model
• Selections should be checked for 

reasonability
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Random Forest

• Hyperparameters
• Number of trees
• Criteria on which to split
• Bootstrap sample size (% of rows)
• When to stop splitting

• Max Tree Depth 
• Minimum Node Size
• Max Leaf Nodes

• Random Variables for each split (# of 
columns)
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Random Forest

• Number of Trees
• More trees makes the models more 

complex
• The number of trees should be “tuned” to 

reduce error on either:
• Separate test dataset
• Out-Of-Bag data from training dataset

• Different software may have different “early 
stopping” rules. Companies should be able 
to explain these rules.
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Random Forest Challenges

• Interpretability
• Prone to Overfit
• Auditability
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Challenges - Interpretability

• GLM’s
• Produce one set of model output
• P-values provide a measure of statistical 

significance
• Higher values can be prioritized for further 

review

• Log-link model coefficients are easy to 
understand
• Beta < 0 is a discount, Beta > 0 is surcharge

• RF’s
• It is hard to digest the net impact of a 

collection of trees
• Variable Importance Plots highlight which 

variables are relatively less important
• Interpretability plots help understand the 

impact of a variable upon the model
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Variable Triaging

• Variable Importance Plots
• Provide a measure of which variables are 

relatively more important than others
• Variables with low importance measures aren’t 

necessarily unimportant, but they might be
• Further scrutiny may be appropriate for variables 

with a low importance measure
• Similar to looking at variables with high p-values in a 

GLM

• Types of variable importance
• Gain: improvement in prediction accuracy from 

feature
• Cover: Number of observations influenced
• Frequency: Number of times used to split data
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Interpretability Plots

• Partial Dependence Plots
• Computes the marginal effect of a given 

feature on the prediction
• Fixes the value of the predictor variable of 

interest, calculating the model prediction for 
each observation using the fixed value

• Repeat for all values of the predictor variable 
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Interpretability Plots

• Accumulated Local Effects
• Better option in the case of 

correlated features
• Calculates and accumulates 

incremental changes in the 
feature effects

• Shows the expected and 
centered effects of a feature, like 
a coefficient in a GLM
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Interpretability Plots

• Shapely Additive Explanations
• How much that feature moves the 

prediction away from the overall 
average prediction.
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Challenges – Prone to Overfit
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• Review Hyperparameters
• Number of trees should be large enough, but no larger

• Look at plot to minimize OOB/Test Error or Deviance
• Tree Complexity

• Minimum node size should be set high enough for reasonable credibility
• Rule of Thumb: Max depth of > 8 may be too high

• Other hyperparameters should be disclosed and briefly commented on
• Bootstrap sample size (% of rows)
• Random Variables tried for each split (# of columns)

• Criteria to split should match the model purpose (classification, regression)
• Review lift charts on test/holdout data



Challenges - Auditability

• GLM’s
• Indicated factors are reproducible if you have 

the coefficients and link function
• Indicated factors can be stored in lookup 

tables
• Auditing model predictions could easily 

be done, even for a large number of risks

• RF’s
• Complete documentation means 

diagrams or if statements representing 
every component tree

• Sample calculations would include input 
variable values, each tree’s result, and the 
final result (average of the component 
trees)

• A full audit of the logic would likely 
involve a significant amount of coding
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Challenges - Auditability
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Sample Risk Driver Age Prior Claims Vehicle Age … Tree 1 Tree 2 Tree 3 … Model Prediction
1 16 0 5 … 50.00$    40.00$    30.00$    … 40.00$                     
2 17 0 6 … 49.00$    39.20$    29.40$    … 39.20$                     
3 18 0 2 … 48.02$    38.42$    28.81$    … 38.42$                     
4 19 1 3 … 47.06$    37.65$    28.23$    … 37.65$                     
5 20 0 9 … 46.12$    36.90$    27.67$    … 36.90$                     

• Random Forest Documentation
• Exhibits could be made for spot-checking against tree documentation

• Input Predictors
• Individual Tree Predictions
• Overall Model Prediction (average)

• However, auditing every prediction for a book of business would still be extremely difficult



Draft Random Forest Appendix For Discussion

• Sending out 2 versions
• Track Changes: Highlights removed, changed, and added items to the GLM Appendix
• Final: Updated with the tracked changes for easy reading

• Looking for feedback for future Random Forest reviews
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References

• Basic Decision Tree Terminology
• https://medium.datadriveninvestor.com/the-basics-of-decision-trees-e5837cc2aba7

• Theoretical Introduction to Random Forest
• Introduction to Statistical Learning (Chapter 8 – 8.2.2)
• https://web.stanford.edu/~hastie/ISLRv2_website.pdf

• Interpretable Machine Learning (Variable Importance and Interpretability Plots)
• https://us.milliman.com/-/media/milliman/pdfs/2021-articles/4-2-21-interpretable-machine-

learning.ashx
• Book Club Presentation: https://www.youtube.com/watch?v=-yMdTAIkewk

• Tree-Based Models Book Club: https://youtu.be/6UCbpAt4r9M
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