Random Forest Models

Sam Kloese, ACAS, CSPA
P/C Rate Modeling Actuary
December 21, 2021
Introduction

- GLM’s are industry standard
- The CASTF White Paper for Predictive Models is focused primarily on GLM’s
- Some companies are filing with more sophisticated models
 - GAM – Similar to GLM’s, but with non-parametric “smoothed” terms
 - Tree Based Models – Based on a collection of multiple decision trees
 - Neural Networks – Mostly for generating scores based on images
- The NAIC model review team has reviewed the above model types without CASTF guidance
- The NAIC model review team would like to discuss how reviews should vary for these differing model types
- Today’s focus is on Random Forests (a type of Tree Based Model)
Tree Based Models

• Models that can be represented as a decision tree or a collection of decision trees
• Types of Tree Based Models
 • Single decision Tree
 • “Bagged” Trees
 • Random Forest
 • Gradient Boosting Machine (XGBoost)
• Supervised Model
 • There is still a target variable
 • Classification: Renew/Non-renew, Claim/No Claim, Fraud/No Fraud
 • Regression: Frequency, Severity, Pure Premium
• Today’s focus will be on Random Forest Models
Tree Based Model

- Single Decision Tree
 - Easy to Understand
 - Mimics how people make decisions
 - Easily interpreted
Tree Based Model

- Single Decision Tree
 - Easy to Understand
 - Mimics how people make decisions
 - Easily interpreted
- Classification returns a likelihood

Prior Claim?

Age < 20?

10% 8%
true false

7% 3%
true false

12/21/202
Tree Based Model

- Single Decision Tree
- Easy to Understand
- Mimics how people make decisions
- Easily interpreted
- Classification returns a likelihood
Tree Based Model

• Single Decision Tree
 • Easy to Understand
 • Mimics how people make decisions
 • Easily interpreted
• Classification returns a likelihood
• Regression returns a predicted amount
Tree Based Model

- Terminology
 - Nodes
 - Root
 - Sub-Node
 - Parent/Child
 - Splitting
 - Branch
 - Sub-Tree

- Prior Claim?
 - Age < 20?
 - True
 - $20
 - False
 - $16

- Age < 20?
 - True
 - $14
 - False
 - $6
Bagged Trees

- Most Tree-Based Models are an “ensemble” of models
- “Bagged” Trees are based on multiple trees
 - “Bagged” comes from “bootstrap aggregated”
 - Each tree is grown the same way
 - The difference is each tree is based on a different bootstrap sample
 - The same variables are considered in each tree
 - Final prediction is the average of each tree’s prediction
Random Forest

- Random Forest
 - Each tree is based on a different bootstrap sample (still)
 - Additionally: Randomly chosen variables considered at each split
 - Each tree is grown the same way
 - Final prediction is the average of each tree's prediction

- Advantages
 - Trees are substantially different
 - Each tree not based on the same sample
 - Each split not based on the same variables
Random Forest

- Example
 - 22 year old driver, no prior claims
 - 5 year old vehicle, $15,000 vehicle
 - \(\frac{(10+15)}{2} = 12.5 \)
Random Forest

- Interpretation gets difficult
 - Trees can get very deep
 - There can be 100’s or 1,000’s of trees
- Many GLM statistical tests no longer apply
- There are many hyperparameters
 - Selections may materially impact the model
 - Selections should be checked for reasonability
Random Forest

- Hyperparameters
 - Number of trees
 - Criteria on which to split
 - Bootstrap sample size (% of rows)
 - When to stop splitting
 - Max Tree Depth
 - Minimum Node Size
 - Max Leaf Nodes
 - Random Variables for each split (# of columns)
Random Forest

- Number of Trees
 - More trees makes the models more complex
 - The number of trees should be “tuned” to reduce error on either:
 - Separate test dataset
 - Out-Of-Bag data from training dataset
 - Different software may have different “early stopping” rules. Companies should be able to explain these rules.
Random Forest Challenges

- Interpretability
- Prone to Overfit
- Auditability
Challenges - Interpretability

• GLM’s
 • Produce one set of model output
 • P-values provide a measure of statistical significance
 • Higher values can be prioritized for further review
 • Log-link model coefficients are easy to understand
 • Beta < 0 is a discount, Beta > 0 is surcharge

• RF’s
 • It is hard to digest the net impact of a collection of trees
 • Variable Importance Plots highlight which variables are relatively less important
 • Interpretability plots help understand the impact of a variable upon the model
Variable Triaging

• Variable Importance Plots
 • Provide a measure of which variables are relatively more important than others
 • Variables with low importance measures aren’t necessarily unimportant, but they might be
 • Further scrutiny may be appropriate for variables with a low importance measure
 • Similar to looking at variables with high p-values in a GLM

• Types of variable importance
 • Gain: improvement in prediction accuracy from feature
 • Cover: Number of observations influenced
 • Frequency: Number of times used to split data
Interpretability Plots

- Partial Dependence Plots
 - Computes the marginal effect of a given feature on the prediction
 - Fixes the value of the predictor variable of interest, calculating the model prediction for each observation using the fixed value
 - Repeat for all values of the predictor variable
Interpretability Plots

• Accumulated Local Effects
 • Better option in the case of correlated features
 • Calculates and accumulates incremental changes in the feature effects
 • Shows the expected and centered effects of a feature, like a coefficient in a GLM
Interpretability Plots

• Shapely Additive Explanations
 • How much that feature moves the prediction away from the overall average prediction.

Feature increases predicted value higher than average value.

Feature decreases predicted value lower than average value.
Challenges – Prone to Overfit

• Review Hyperparameters
 • Number of trees should be large enough, but no larger
 • Look at plot to minimize OOB/Test Error or Deviance
 • Tree Complexity
 • Minimum node size should be set high enough for reasonable credibility
 • Rule of Thumb: Max depth of > 8 may be too high
 • Other hyperparameters should be disclosed and briefly commented on
 • Bootstrap sample size (% of rows)
 • Random Variables tried for each split (# of columns)
 • Criteria to split should match the model purpose (classification, regression)
• Review lift charts on test/holdout data
Challenges - Auditability

• GLM’s
 • Indicated factors are reproducible if you have the coefficients and link function
 • Indicated factors can be stored in lookup tables
 • Auditing model predictions could easily be done, even for a large number of risks

• RF’s
 • Complete documentation means diagrams or if statements representing every component tree
 • Sample calculations would include input variable values, each tree’s result, and the final result (average of the component trees)
 • A full audit of the logic would likely involve a significant amount of coding
Challenges - Auditability

- Random Forest Documentation
 - Exhibits could be made for spot-checking against tree documentation
 - Input Predictors
 - Individual Tree Predictions
 - Overall Model Prediction (average)

<table>
<thead>
<tr>
<th>Sample Risk</th>
<th>Driver Age</th>
<th>Prior Claims</th>
<th>Vehicle Age</th>
<th>Tree 1</th>
<th>Tree 2</th>
<th>Tree 3</th>
<th>...</th>
<th>Model Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>0</td>
<td>5</td>
<td>$ 50.00</td>
<td>$ 40.00</td>
<td>$ 30.00</td>
<td>...</td>
<td>$ 40.00</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>0</td>
<td>6</td>
<td>$ 49.00</td>
<td>$ 39.20</td>
<td>$ 29.40</td>
<td>...</td>
<td>$ 39.20</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>0</td>
<td>2</td>
<td>$ 48.02</td>
<td>$ 38.42</td>
<td>$ 28.81</td>
<td>...</td>
<td>$ 38.42</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>1</td>
<td>3</td>
<td>$ 47.06</td>
<td>$ 37.65</td>
<td>$ 28.23</td>
<td>...</td>
<td>$ 37.65</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>0</td>
<td>9</td>
<td>$ 46.12</td>
<td>$ 36.90</td>
<td>$ 27.67</td>
<td>...</td>
<td>$ 36.90</td>
</tr>
</tbody>
</table>

- However, auditing every prediction for a book of business would still be extremely difficult
Draft Random Forest Appendix For Discussion

- Sending out 2 versions
 - Track Changes: Highlights removed, changed, and added items to the GLM Appendix
 - Final: Updated with the tracked changes for easy reading
- Looking for feedback for future Random Forest reviews
References

• Basic Decision Tree Terminology
 • https://medium.datadriveninvestor.com/the-basics-of-decision-trees-e5837cc2aba7

• Theoretical Introduction to Random Forest
 • Introduction to Statistical Learning (Chapter 8 - 8.2.2)
 • https://web.stanford.edu/~hastie/ISLRv2_website.pdf

• Interpretable Machine Learning (Variable Importance and Interpretability Plots)
 • https://us.milliman.com/-/media/milliman/pdfs/2021-articles/4-2-21-interpretable-machine-learning.ashx
 • Book Club Presentation: https://www.youtube.com/watch?v=-yMdTAlkewk

• Tree-Based Models Book Club: https://youtu.be/6UCbpAt4r9M