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Property
• Build models to improve PPC effectiveness and assess performance
• Organizes internal and external data to provide complete picture of property loss experience
• Define requirements for and works with companies providing analysis files
• Define requirements for data onboarding specialists to create property analytic object

Auto
• Built control models used for:
• Building and improving new and current products

Conversation Analytic Suites
• Led and contributed to deployments to deliver customized text analytics to large companies in the following spaces:

• Healthcare
• Education
• Insurance
• Hospitality
• Internet
• Banking

Functional Industry
• Analytics | Data Science | Machine Learning
• Underwriting  | Rating Models
• Fire Severity | PPC
• Risk Segmentation | Risk Classification
• Econometrics

• Insurance 
• Conversation

SELECT EXPERIENCES

EXPERTISE 

Tim Hagan is a Senior Data Scientist with Verisk Analytics, ISO Insurance Analytics, 
based in Buffalo Grove. He has 5+ years of experience working in analytics, leading 
projects in the conversation and insurance spaces. He brings a fresh perspective to 
insurance analytics and has worked on mainly personal lines projects.

Prior to Verisk, Tim worked as a Sr. Behavioral Science Analyst. Most of his work 
involved NLP and putting structure around unstructured conversations.

BA in Psychology; Business/Economics, Wheaton College, IL, USA
MS in Statistics; Texas A&M, College Station, TX, USA (Currently Pursuing)

BACKGROUND

EDUCATION

Computation/Data Tools:
• R
• Python
• SQL
• SAS
• AWS
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Tim Hagan
Senior Data Scientist, Insurance Analytics
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Profile

Michael Regier, PhD
Director of Insurance Analytics, Personal Lines

BACKGROUND
Michael Regier is the Director of Insurance Analytics, Personal Lines, with Verisk Analytics, ISO 
Insurance Analytics.  His home office is Buffalo Grove, IL and is based in Anchorage, AK. He is 
a Ph.D. statistician with 16+ years of experience consulting, leading projects in the medical, academic, 
government, research, and insurance spaces. He brings a cross-functional and trans-disciplinary 
perspective to insurance analytics and has worked on both personal and commercial lines projects.

Prior to Verisk, Dr. Regier was a tenured Associate Professor, Dept. Biostatistics, working on the 
effect and correction of corrupted data structures for machine learning algorithms, effects of analytic 
architectures on statistical and Machine Learning methods, simulation study design, graphical 
interpretation of machine learning models, omics and clinical research.  Other areas of research have 
included causal inference, graph theory for statistical inference, likelihood theory, EM Algorithm, 
epidemiological modeling, propensity scoring, missing data and measurement error.

PROFESSIONAL DESIGNATIONS AND ACTIVITIES
Michael is an active member of the American Statistical Association and the IEEE professional 
societies.  He was on the ASA Conference on Statistical Practice steering committee (2018-2021).

He has 37 peer reviewed publications, 12 technical reports and white papers, and over 70 
presentations, seminars, and workshops, and has taught over 35 courses and lecture series ranging 
from mathematical statistics to programming.

EDUCATION
• Postdoctoral Fellow,  McGill University, Department of Epidemiology, Biostatistics and 

Occupational Health.
• PhD in Statistics, University of British Columbia
• MSc in Statistics, University of British Columbia

ISO Cyber Risk Solution
Analytic support for both refreshment and redevelopment of various analytic components to the ISO 
Cyber Risk Solution rating models. Integrated novel machine learning techniques to address stability, 
monitoring and maintenance. Participated in customer and regulatory conversations.

General Liability
Developed a solution, based on functional clustering, to identify macro-level risk groups that will provide 
a more pragmatic yet refined characterization of general liability class group risk curve families.

Professional Liability
Developed a suite of analytics supporting an ISO Underwriting R&D project, integrating best in class 
from software and data engineering, data science, and statistics to support product maintenance.  
Participated in conversations with insurance partners.

Personal Lines
Leading teams for updates to 360 Value RCE, expansion of SmartSource capabilities, enhancements 
to the Risk Analyzer suite of products.  He is working with his team in the areas of novel methodologies, 
addressing to social dimension of machine learning, and exploring way to better interpret complex 
methodologies.

SELECTED PROJECTS

INTERESTS AND EXPERTISE 
• Data Science | Analytics | Machine Learning
• Underwriting | Rating Models
• Statistical Practice |Theory | Coarsened Data
• Experimental Design | Causal Inference
• Simulation Studies 
• Analytic Process Assessment and Architecture
• Stochastic Processes| AI | Rational Agents

• Risk Consulting and Analysis
• Insurance: Property/Casualty
• Clinical and Population Health
• Life Sciences | Clinical Statistical Methodology
• Academia | Consulting
• Government Health Organizations
• Grant and proposal writing
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Motivation
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Settings for Regularization Methods

• Regularization methods are 
• Commonly introduced within the context of regression methods, and

• Commonly presented as a tool for model selection.

• Can mitigate problems associated with collinearity

• Regularization methods have utility for 

• Prediction: Can reduce variability while maintaining low model bias in terms of the bias-variance trade-off.
• Interpretability: These methods can assist in removing irrelevant or obfuscating variables – parsimonious models.

• Parsimony: The state of being stingy.

• Parsimonious models: Stingy with the number of variables retained in the final model.

• Regularization as model selection

• An option for predictor (regressor) subset selection
• Subset selection examples: Purposeful, stepwise, AIC, BIC, F- and t-test, best subset model space search.

Motivation
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Example: 1974 Motor Trend US Data

Motivation

• This dataset was extracted from the 1974 Motor Trend US 
magazine and comprises fuel consumption and 10 
aspects of automobile design and performance for 32 cars 
(1973-74 models).

• Formula: mpg ~ cyl + disp + hp + drat + … + carb

• 4 Methods
– OLS
– Ridge
– Lasso
– Elastic Net

• Comparison of the methods

Variables
mpg Miles/(US) gallon

cyl Number of cylinders

disp Displacement (cu.in.)

hp Gross horsepower

drat Rear axle ratio

wt Weight (1000 lbs)

qsec ¼ mile time

vs Engine (0 = V-shaped, 1 = straight)

am Transmission (0 = automatic, 1 = manual)

gear Number of forward gears

carb Number of carburetors
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Foundational Ideas
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Terminology: Model Selection
• Model selection: The process of identifying a specific realization of a 

model from a set, class, or family of models.

• Choosing neural networks from the set of all possible machine 
learning methodologies.

• Choosing logistic regression from the class of all GLM models.

• Choosing a specific functional form from the family of logistic 
regression models.

• Choosing a specific set of estimated parameters for a specific 
functional form of a logistic regression model.

• e.g. �ℳ: {𝒴𝒴,𝒳𝒳} → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒳𝒳∗ 𝑠𝑠. 𝑡𝑡. �Θ = argmin
Θ

ℎ �ℳ(Θ),ℳ; ℱℳ∗

Foundations

ML Models
NN, SVM, Trees, GLM, 

OLS, LDA, GAMs, 
Bayesian, etc.

Neural Networks

GLM Class
OLS, Logistic, Poisson, 

Tweedie, Gamma, 
Negative Binomial

Logistic Regression

Logistic Family
𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝑋𝑋𝑋𝑋)

In X: linear, polynomial, interactions, 
Box-Tidwell transformations

Logistic Family
Chosen functional form

𝐸𝐸 𝑌𝑌;𝒙𝒙∗,𝛽𝛽 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝑋𝑋∗𝛽̂𝛽)
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Terminology: Regularization, Shrinkage
• Regularization: The process of adding information, such as a constraint, to solve ill-defined problems.

• A common formulation for regularization is using a Lagrange Multiplier or constraint function.
• Lagrange Multiplier

ℎ 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 + 𝜆𝜆𝜆𝜆(𝒙𝒙)

• Constraint function (example)

ℎ 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 subject to 𝑔𝑔 𝒙𝒙 ≤ 𝑠𝑠

• The constraint functions bring clarity and focus to a problem.
• e.g. model parsimony and/or minimize impact of latent data structure.

• Shrinkage: Another name for regularization when the constraint function forces (i.e. shrinks) coefficient estimates towards 0

Foundations

Objective Function

Constraint Function

Objective Function Constraint Function

X
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Modeling : The Human Component

• Check yourself at the IDE
• We come with preconceived notions:

• Favorite models (e.g. Model choice biases)

• Personal thoughts/perceptions (e.g. Personal experience, media)
• Educational predisposition (e.g. Actuarial vs. Statistical/Mathematical vs. Information Systems)

• Objective, rational model building requires:
• Understanding, acknowledging, accepting, and challenging inherent predispositions, and

• Embracing humility.

• We bring ourselves to every modeling exercise.

• The belief of analytic objectivity is naïve.

• Know yourself, know your data, know your question, and know the weaknesses.

Foundations



© 2021 Verisk Analytics, Inc. All rights reserved. 12

The “Linear” Model
Origins: 
• The concept of a linear model is based on the linear algebra concepts of linear spaces, spans, and linear combinations of vectors: 𝑤𝑤 = ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑥⃗𝑥𝑖𝑖.

Examples:
• OLS: 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜖𝜖 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖

• GLM: 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝑔𝑔−1 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 = 𝑔𝑔−1(𝑋𝑋𝑋𝑋)

• Polynomial OLS: 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥12 + 𝛽𝛽3𝑥𝑥13 + ⋯+ 𝛽𝛽𝑑𝑑𝑥𝑥1𝑑𝑑 + 𝜖𝜖

• Step Function OLS: 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶(𝑥𝑥1) + 𝛽𝛽2𝐶𝐶(𝑥𝑥1) + ⋯+ 𝛽𝛽𝑘𝑘𝐶𝐶(𝑥𝑥1) + 𝜖𝜖, where
• 𝐶𝐶0 𝑥𝑥1 = 𝐼𝐼 𝑥𝑥1 < 𝑐𝑐1
• 𝐶𝐶1 𝑥𝑥1 = 𝐼𝐼 𝑐𝑐1 ≤ 𝑥𝑥1 < 𝑐𝑐2
• …
• 𝐶𝐶𝑘𝑘 𝑥𝑥1 = 𝐼𝐼 𝑐𝑐𝑘𝑘 ≤ 𝑥𝑥1

• Fractional Polynomial GLM: 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝑔𝑔−1[𝜙𝜙(𝑥𝑥;𝛽𝛽, 𝑞𝑞)], where

• 𝜙𝜙 𝑥𝑥;𝛽𝛽, 𝑞𝑞 = ∑𝑗𝑗=0𝑚𝑚 𝛽𝛽𝑗𝑗ℎ𝑗𝑗(𝑥𝑥), where ℎ𝑗𝑗 𝑥𝑥 = �
𝑥𝑥𝑞𝑞𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝑞𝑞𝑗𝑗 ≠ 𝑞𝑞𝑗𝑗−1
𝑥𝑥𝑞𝑞𝑗𝑗−1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑖𝑖𝑖𝑖 𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑗𝑗−1

• Basis Expansion OLS:  𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽1𝑏𝑏2(𝑥𝑥1) + 𝛽𝛽2𝑏𝑏2(𝑥𝑥1) + ⋯+ 𝛽𝛽𝑘𝑘𝑏𝑏𝑘𝑘(𝑥𝑥1) + 𝜖𝜖

• Spline (GLM form): 𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽1ℎ2 𝑥𝑥1 + 𝛽𝛽2ℎ2 𝑥𝑥1 + ⋯+ 𝛽𝛽𝑘𝑘ℎ𝑘𝑘 𝑥𝑥1 + 𝜖𝜖

• CART: 𝑓𝑓 𝑥𝑥 = ∑𝑚𝑚=1
𝑀𝑀 𝑐𝑐𝑚𝑚𝐼𝐼 𝑥𝑥 ∈ ℝ𝑚𝑚

Foundations

Components of a linear model
𝐸𝐸 𝑌𝑌;𝒙𝒙,𝛽𝛽 = 𝑔𝑔−1(𝑋𝑋𝑋𝑋)

Systematic Component

Inverse Link Function

Random Component
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MSE: A Familiar Model Assessment Friend

• Recall: The mean squared error (MSE) for an estimator W of the parameter θ is defined as

𝐸𝐸𝜃𝜃(𝑊𝑊 − 𝜃𝜃)2= 𝑉𝑉𝑉𝑉𝑉𝑉𝜃𝜃 𝑊𝑊 + (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜃𝜃𝑊𝑊)2

• Reducing the MSE of an estimator requires an overall reduction in the balance between its variance and bias.

• For an unbiased estimator where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜃𝜃 𝑊𝑊 =0, 

• For unbiased estimators, reducing the MSE requires only the minimization of the estimator’s variance.

Foundations

Expected squared 
“distance” between 
the estimator and 
the parameter

Variance of the 
estimator, 

𝑉𝑉𝑉𝑉𝑉𝑉𝜃𝜃 𝑊𝑊
= 𝐸𝐸𝜃𝜃 𝑊𝑊 − 𝜃𝜃 2

Squared Bias of 
the estimator,

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜃𝜃 𝑊𝑊
= 𝐸𝐸𝜃𝜃(𝑊𝑊 − 𝜃𝜃)
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Going deeper

Foundations

Now, let’s get technical … 

I love 
technical 

Relevance … ?

Nap time!
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Bias-Variance Trade-off
• When assessing model performance for predictive models, the MSE reveals more complexity.
• Assume:

• 𝑌𝑌 = 𝑓𝑓 𝑋𝑋 + 𝜖𝜖.
• 𝐸𝐸 𝜖𝜖 = 0.
• 𝑉𝑉𝑉𝑉𝑉𝑉 𝜖𝜖 = 𝜎𝜎𝜖𝜖2, where the variance is induced by 𝑌𝑌~ 𝐺𝐺 𝜽𝜽 .
• 𝑓𝑓 𝑋𝑋 is the estimated model, often written as �𝑦𝑦 = 𝑓𝑓 𝑋𝑋 .
• 𝑋𝑋 = 𝑥𝑥0 is an input point that is fixed for which a prediction is desired.

• Given an input, the prediction error is

𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥0 = 𝐸𝐸𝑋𝑋,𝑌𝑌 ~ 𝐺𝐺 𝑌𝑌 − 𝑓𝑓 𝑋𝑋
2
𝑋𝑋 = 𝑥𝑥0

= 𝜎𝜎𝜖𝜖2 + 𝐸𝐸𝑋𝑋 (𝐸𝐸𝑌𝑌 𝑌𝑌 𝑥𝑥 − 𝑓𝑓 𝑋𝑋 )2 𝑋𝑋 = 𝑥𝑥0

= 𝜎𝜎𝜖𝜖2 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋(𝑓𝑓 𝑋𝑋 )2 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑋𝑋(𝑓𝑓 𝑋𝑋 )

• We can choose a model, 𝑓𝑓 𝑋𝑋 such that we reduce bias and/or variance associated with our model estimator 𝑓𝑓 𝑋𝑋 .
• We cannot choose a model 𝑓𝑓 𝑋𝑋 that reduces variance in 𝑌𝑌, 𝜎𝜎𝜖𝜖2.  This variance is determined by the underlying 

distribution of the data.

Foundations

Irreducible Error determined by 𝑌𝑌

Squared Bias of the estimator 𝑓𝑓 𝑋𝑋 Variance of the estimator 𝑓𝑓 𝑋𝑋

So … there are 2 
variances, and a 
bias associated 
with the model!
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Bias-Variance Trade-off: Why should I care?
• Assume you have the same data and two models: 𝑀𝑀1,𝑀𝑀2.

• Let both models be polynomials of degree 𝑝𝑝1 and 𝑝𝑝2 respectively, where 𝑝𝑝1 < 𝑝𝑝2, e.g. a quadratic and a cubic.

• Due to the lower complexity of 𝑀𝑀1, this model will be a poorer fit to the data than 𝑀𝑀2. This indicates that

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑀𝑀1 > 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑀𝑀2 .

• Although 𝑀𝑀1 has larger bias than 𝑀𝑀2, it is more stable with respect to changes in the underlying data.  This 
indicates that

𝑉𝑉𝑉𝑉𝑉𝑉𝑋𝑋 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑀𝑀1 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑋𝑋 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑀𝑀2 .

• Balancing the bias-variance trade-off is a central exercise in predictive modeling.

• It forces us to re-think how bias and variance is manifest for machine learning models 

• It is reasonable that a “biased estimator” (model) may have meaningful variance reduction to produce an 
overall desirable predictive error, 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥0

• Conversely, a bias free estimator – “perfect predictor” – may have so much variability as to render it useless 
for any sensible prediction due to high instability to the underlying data.

Foundations

Ah, a slightly 
imperfect model 
may be better 

because it provides 
stability when used 
on “new” data – it is 

generalizable!
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Two Sides of the Same Model

There are two fundamental uses of a model.

1. Association

• Identify a set of variables (explanatory variables, regressors) that explain the 
variation observed in Y, and 

• Estimate the effect of each variable in the explanation.  

• The explained variation is characterized by the systematic component and the 
remaining noise is “unexplained” error.

• Associations may be purely relational to even causal, depending on the study 
design (architecture)

2. Prediction

• Predict (estimate) the response value we would see given a set of known 
variables (e.g. predictors, regressors)

• If I have  a new observation (e.g. house, car, person) and some attributes, what 
can I expect to see.

Foundations

The intended use and 
questions affect how I 

use and potentially 
build the model!
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Regularization/Shrinkage:
Methodological Framework
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OLS: Recalling Key Assumptions

• The OLS model is defined as
𝑌𝑌 = ∑𝑗𝑗=0

𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗 + 𝜖𝜖, where 𝑥𝑥0 ≡ 1.

• It is a linear model, because it is linear in 𝜷𝜷.

• We characterize/predict �𝑦𝑦 = 𝐸𝐸 𝑌𝑌 𝑋𝑋 = 𝑥𝑥 = ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗 using least squares to estimate 𝛽𝛽

argmin
𝛽𝛽

𝑦𝑦 − 𝑋𝑋𝑋𝑋 ′ 𝑦𝑦 − 𝑋𝑋𝑋𝑋

• Assumptions:
1. 𝑌𝑌 and 𝜖𝜖 are random variables, distributed from the same family.
2. 𝑋𝑋 is a set of known constants.  These are observed and have no random variation associated with them.
3. 𝐸𝐸 𝜖𝜖 = 0 for all observational units ⇔ 𝐸𝐸 𝑌𝑌 𝑋𝑋 = 𝑥𝑥 = ∑𝑗𝑗=0

𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗 .
4. Var 𝜖𝜖 = 𝜎𝜎2 for all observational units ⇔ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 𝑋𝑋 = 𝑥𝑥 = 𝜎𝜎2.
5. 𝐶𝐶𝐶𝐶𝐶𝐶 𝜖𝜖 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝜎𝜎2 and is 0 for all off diagonal ⟺ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌 𝑋𝑋 = 𝑥𝑥 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝜎𝜎2 with 0 of diagonals.
6. 𝑋𝑋 = 𝑥𝑥 𝑥𝑥𝑗𝑗 ⊥ 𝑥𝑥𝑘𝑘, ∀ 𝑗𝑗 ≠ 𝑘𝑘 and ∀𝑥𝑥𝑗𝑗∈ 𝑋𝑋, 𝑥𝑥𝑗𝑗 ∉ 𝑋𝑋∗ ⊆ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋/𝑥𝑥𝑗𝑗 ; regressors are independent and not a linear combination of other regressors.

Methodology

Association Prediction

Residual sum of squares –
matrix form

Find the 𝛽𝛽 from all possible 𝛽𝛽
that gives the minimum value.
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GLM: Key Assumptions

• GLMs are an extension or generalization of the OLS model.

𝑔𝑔(𝐸𝐸 𝑌𝑌 𝑋𝑋 = 𝑥𝑥 ) = ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗, where 𝑥𝑥0 ≡ 1.

• The GLM assumptions are
1. 𝑌𝑌 is random variables, distributed from the exponential family: 𝑓𝑓 𝑌𝑌 𝜃𝜃,𝜙𝜙 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦𝜃𝜃−𝑏𝑏(𝜃𝜃)

𝑎𝑎(𝜙𝜙)
+ 𝑐𝑐(𝑦𝑦,𝜙𝜙) .

2. 𝑋𝑋 are observed and have no random variation associated with them.
3. 𝐸𝐸 𝑌𝑌 = 𝑏𝑏′(𝜃𝜃) for all observational units. 
4. Var 𝑌𝑌 = 𝑏𝑏′′ 𝜃𝜃 𝑎𝑎(𝜙𝜙) for all observational units.
5. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌 has 0 for all off diagonal.
6. 𝑋𝑋 = 𝑥𝑥 𝑥𝑥𝑗𝑗 ⊥ 𝑥𝑥𝑘𝑘, ∀ 𝑗𝑗 ≠ 𝑘𝑘 and ∀𝑥𝑥𝑗𝑗∈ 𝑋𝑋, 𝑥𝑥𝑗𝑗 ∉ 𝑋𝑋∗ ⊆ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋/𝑥𝑥𝑗𝑗 ; regressors are independent and not a linear combination of other 

regressors.
7. The link function is any monotonic differentiable function.

• Notes
• GLM estimation theory uses the likelihood method, hence the requirement of exponential family for estimator derivation.
• Fitting a GLM (estimation) uses an equivalence between the maximum likelihood theory and weighted least squares: argmin

𝛽𝛽
𝑦𝑦 − 𝑋𝑋𝑋𝑋 ′𝑊𝑊 𝑦𝑦 − 𝑋𝑋𝑋𝑋

Methodology

Systematic Component

Link Function

Random Component
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Ridge Regression: Definition

• From least squares estimation, we recall that 𝛽𝛽 is estimated using the argument that minimizes

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2
, where 𝑥𝑥0 ≡ 1.

• Ridge regression constrains the minimization to the circle defined by ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2.

• 𝛽𝛽 is estimated using

𝛽̂𝛽𝑅𝑅 = argmin
𝛽𝛽

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 −�

𝑗𝑗=0

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2

+ 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗2

= argmin
𝛽𝛽

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗2

• With 𝜆𝜆 = 0, the ridge regression is the least squares estimate.  
• As 𝜆𝜆 ⟶ ∞, ridge regression puts more emphasis on the penalty.  Coefficients will approach 0.
• We expect that ridge regression will produce a different set of coefficients with different 𝜆𝜆.
• 𝛽𝛽0 is not included in the constraint because it is a measure of the mean response.

Methodology

Shrinkage penalty only applied to 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝

�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗2 ≤ 𝑟𝑟2 = 𝑓𝑓(𝜆𝜆)

r

Shrinkage penalty (𝜄𝜄2), 
where 𝜆𝜆 ≥ 0 is a tuning parameter

So … shrinking the size of 
the circle means I am 

increasing the penalty for the 
squared sum of  coefficients.  
This is the same as 𝜆𝜆 being 

large.
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Ridge Regression: Two Formulations

• Constrained optimization for ridge regression can be viewed through two lenses.

1. Lagrange Multiplier: 

�𝛽𝛽𝑅𝑅 = argmin
𝛽𝛽

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 −�

𝑗𝑗=0

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2

+ 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗2

2. Constraint optimization (non-Lagrange formulation)

�𝛽𝛽𝑅𝑅 = argmin
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2
subject to ∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2 ≤ 𝑠𝑠

Note: 
• 𝑠𝑠 = ℎ(𝑟𝑟), e.g. 𝑠𝑠 = 𝑟𝑟2

• As 𝑟𝑟 increases, it will eventually cover the unconstrained 𝛽̂𝛽, which is equivalent to 𝜆𝜆 → 0.
• The dual manner by which the constrained optimization is posed reveals that there exists a circle of size s that touches a 

constant level of the RSS curve, and the tangent lines for each are parallel.  This is equivalent of finding the stationary point (first 
derivative) of the Lagrange equation.

Methodology

2-dimensional example of how the 
constraint function shrinks 
parameters.  Estimated 𝛽𝛽 = 𝛽𝛽1,𝛽𝛽2
is located at the X.

X
r
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The Effect of the Tuning Parameter

Methodology

• Common plots for examining the effect of the tuning parameter are:
• Standardized Coefficients against 𝜆𝜆
• MSE against 𝜆𝜆

• Standardized Coefficients against 𝜆𝜆
• 𝜆𝜆 = 0 is the equivalent to the OLS solution.
• Coefficients shrink as 𝜆𝜆 ⟶ ∞
• The “function” of shrinking need not be monotonic.
• Due to the non-monotonic nature of shrinkage, we should not expect the same 

selection or “mix” of coefficients for each lambda.

• MSE against 𝜆𝜆
• Black: Squared Bias
• Green: Variance
• Test MSE: Purple
• In general, as 𝜆𝜆 ⟶ ∞ the ridge regression “fit” to the data decreases.

• Decreased variance (green), but increased bias (black)
• More stable, but less flexibly for characterizing the specifics of the data.

• The test MSE reveals the optimal 𝜆𝜆 that balances the Bias-Variance trade-off.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical 
learning: data mining, inference, and prediction.  2nd edition. Springer.

⟶∞0 ←

⟶ ∞0 ←
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Methodology

Of course, we 
can do that! What about 

other shapes?

Huh? 
What’s happening.  

Nap time?
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Lasso Regression: Definition

• From least squares estimation, we recall that 𝛽𝛽 is estimated using the argument that minimizes

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2
, where 𝑥𝑥0 ≡ 1.

• Lasso regression constrains the minimization to the region (polytope) defined by ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗 .

• 𝛽𝛽 is estimated using

𝛽̂𝛽𝐿𝐿 = argmin
𝛽𝛽

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 −�

𝑗𝑗=0

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2

+ 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗

= argmin
𝛽𝛽

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗

• With 𝜆𝜆 = 0, the lasso produces the least squares estimate.  
• As 𝜆𝜆 ⟶ ∞, then the lasso puts more emphasis on the penalty; coefficients will reach 0.

• Lasso performs variable selection, because of this property.
• 𝛽𝛽0 is not included in the constraint because it is a measure of the mean response.

Methodology

Shrinkage penalty (𝜄𝜄1), 
where 𝜆𝜆 ≥ 0 is a tuning parameterShrinkage penalty only applied to 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝

So … shrinking the “size” of the 
polytope (making s smaller), means 
I am increasing the penalty for the 

sum of absolute coefficients.  This is 
the same as 𝜆𝜆 being large.

�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗 = 𝑠𝑠 = 𝑓𝑓 𝜆𝜆
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Lasso Regression: Two Formulations

• Constrained optimization for lasso regression can be viewed through two lenses.

1. Lagrange Multiplier: 

�𝛽𝛽𝐿𝐿 = argmin
𝛽𝛽

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 −�

𝑗𝑗=0

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2

+ 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗

2. Constraint optimization (non-Lagrange formulation)

�𝛽𝛽𝐿𝐿 = argmin
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2
subject to ∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗 ≤ 𝑠𝑠

Note: The point of “intersection” between the parameter space and the constraint space is a vertex that is aligned with an 
axis of the parameter space. It is this property that facilitates variable selection for the Lasso.

Methodology

2-dimensional example of how the 
constraint function shrinks parameters.  
Estimated 𝛽𝛽 = 𝛽𝛽1,𝛽𝛽2 is located at the X.

X

�
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗 = 𝑠𝑠



© 2021 Verisk Analytics, Inc. All rights reserved. 27

The Effect of the Tuning Parameter: Variable Selection

Methodology

• Standardized Coefficients against 𝜆𝜆
• 𝜆𝜆 = 0 is the equivalent to the OLS solution
• Coefficients: as 𝜆𝜆 ⟶ ∞, then �𝛽𝛽 → 0
• As 𝜆𝜆 ⟶ ∞ then the fully specified model tends to the null model (e.g. intercept only)
• The “function” of shrinking need not be monotonic
• We anticipate when a coefficient is removed (i.e. �𝛽𝛽 = 0), it will not re-enter into the 

model.

• MSE against 𝜆𝜆
• Black: Squared Bias
• Green: Variance
• Test MSE: Purple
• In general, as 𝜆𝜆 ⟶ ∞ the lasso regression fit decreases

• Decreased variance (green), but increased bias (black)
• More stable, but less flexibly for characterizing the data
• Here we observe that as 𝜆𝜆 ⟶ ∞ the model tends to the grand average (intercept 

only model) 
• The test MSE reveals the optimal 𝜆𝜆 that balances the Bias-Variance trade-off.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical 
learning: data mining, inference, and prediction.  2nd edition. Springer.

⟶∞0 ←

⟶ ∞0 ←



© 2021 Verisk Analytics, Inc. All rights reserved. 28

Comparing Ridge and Lasso
• The Lasso performs variable selection producing simpler models.  

This may ease interpretation.

• The Lasso demands that some of the coefficients will eventually 
reach zero and the as 𝜆𝜆 ⟶ ∞ then the fully specified model 
tends to the null model.  This is an implicit assumption that the 
Ridge does not contain.

• Choosing between the two is an exercise in comparing which 
approach optimizes the minimization of the MSE.  It is contextual 
that should not involve “preferred” approaches.

• Lasso may perform better where there are a few dominating 
effects

• Ridge may perform better when the response is a function 
of many effects. 

• Both approaches help to reduce variance, in terms of the Bias-
Variance trade-off.

• Both have comparable computational costs. 

Methodology

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction.  2nd edition. Springer.
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Methodology

Of course, we 
can do that! More complex?

Now you have my 
attention …
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Elastic Net Regression: Definition

• From least squares estimation, we recall that 𝛽𝛽 is estimated using the argument that minimizes

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗=0
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2
, where 𝑥𝑥0 ≡ 1.

• The Elastic Net regression constrains the minimization to the region defined by ∑𝑗𝑗=1
𝑝𝑝 𝛼𝛼𝛽𝛽𝑗𝑗2 + 1− 𝛼𝛼 𝛽𝛽𝑗𝑗

𝛽̂𝛽𝐿𝐿 = argmin
𝛽𝛽

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 −�

𝑗𝑗=0

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

2

+ 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛼𝛼𝛽𝛽𝑗𝑗2 + 1 − 𝛼𝛼 𝛽𝛽𝑗𝑗

= argmin
𝛽𝛽

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆�
𝑗𝑗=1

𝑝𝑝
𝛼𝛼𝛽𝛽𝑗𝑗2 + 1 − 𝛼𝛼 𝛽𝛽𝑗𝑗

• OLS, Ridge, Lasso are members of the Elastic Net family of models.  Originally viewed as a generalization of the Lasso.
• With 𝜆𝜆 = 0, the elastic net produces the “familiar” least squares estimate.  
• With 𝜆𝜆 > 0 and 𝛼𝛼 = 1, the elastic net reduces to ridge regression
• With 𝜆𝜆 > 0 and 𝛼𝛼 = 0, the elastic net reduces to lasso regression
• 𝛽𝛽0 is not included in the constraint because it is a measure of the mean response.

Methodology

Shrinkage penalty is a mixture of 𝜄𝜄1 and 𝜄𝜄2 norms, 
where α, 𝜆𝜆 ≥ 0 are tuning parameters

Shrinkage penalty only applied to 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝
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Elastic Net Constraint Observations

• Edge singularities are observed at the vertices.  
• This picks up a property of the lasso.

• The edges are strictly convex, with the strength of convexity varying with 𝛼𝛼.  
• The constraint is strictly convex when 𝛼𝛼 > 0.

• Observations about the function as 𝜆𝜆 → 0 and as 𝜆𝜆 ⟶ ∞ remain but are modified 
as a function of 𝛼𝛼.

• e.g. As 𝜆𝜆 ⟶ ∞, and as 𝛼𝛼 → 1, then the effect of selection decreases, shifting 
from model selection when 𝛼𝛼 = 0, to coefficient shrinkage when 𝛼𝛼 = 1.

• Model sparsity (parsimony) is a function of 𝛼𝛼. As 𝛼𝛼 → 0, sparsity increases.  As as 
𝛼𝛼 → 0, and 𝜆𝜆 ⟶ ∞, the elastic net tends to the grand mean model (intercept only).

• Model stability (e.g. lower variance) with parsimony may be achievable by 
balancing the effects of the lasso (𝜄𝜄1) with the ridge (𝜄𝜄2).  The consequence is that 
sparse solutions are not fully realized in the presence of collinearity.

• The presence of the ridge loss is critical to providing stability in the presence 
of collinearity.

Methodology

Elastic Net constraint with 𝛼𝛼 = 0.5.
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Examples
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Motor Trend Cars Dataset

Example

Variables
mpg Miles/(US) gallon

cyl Number of cylinders

disp Displacement (cu.in.)

hp Gross horsepower

drat Rear axle ratio

wt Weight (1000 lbs)

qsec 1/4 mile time

vs Engine (0 = V-shaped, 1 = straight)

am Transmission (0 = automatic, 1 = manual)

gear Number of forward gears

carb Number of carburetors
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OLS Solution

Example
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Example

Ridge Regression
lambda.1se = 11.65

am

wt
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Example

Ridge Regression
lambda.1se = 11.65

Number of Variables
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Example

Lasso Regression
lambda.1se = 1.4



© 2021 Verisk Analytics, Inc. All rights reserved. 38

Example

Lasso Regression
lambda.1se = 1.4

Number of Variables
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Example

Refitted Lasso

Variable Lasso Refit Lasso (OLS)
cyl -0.84412 -0.94162
hp -0.00705 -0.01804
wt -2.37204 -3.16697
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Example

Elastic Net
Lambda = 0.9 alpha = .7
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Example

Elastic Net
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Example

Final Comparison
Ridge Lasso Elastic Net
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• Regularization methods are 
• Commonly introduced within the context of regression methods

• Commonly presented as a tool for model selection

• Can mitigate problems associated with collinearity

• Regularization methods have utility for 

• Prediction: Can reduce variability while maintaining low model bias in terms of the bias-variance trade-off
• Interpretability: These methods can assist in removing irrelevant or obfuscating variables – parsimonious models

• Parsimony: The state of being stingy

• Parsimonious models: Stingy with the number of variables retained in the final model

• Regularization as model selection

• An option for predictor (regressor) subset selection
• Subset selection examples: Purposeful, stepwise, AIC, BIC, F- and t-test, best subset model space search

Final Summary: A Reminder of Why We Should Care

Conclusion
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