

Ad-hoc meeting

Eric Kolchinsky

December 5, 2024

NATIONAL ASSOCIATION OF INSURANCE COMMISSIONERS

Overview

- The core algorithm chosen to set the probabilities is simple:
- 1. Calculate the portfolio "risk" in each deal by applying RBC to each loan
- 2. Randomly generate probability distributions
- 3. Select distribution which minimizes the mean squared error for all CLOs in our database:

$$\sum (RBC_{Liab} - RBC_{Port})$$

- Due to computational costs in step 2, a hybrid approach was taken as described below.
- The resulting PRELIMINARY probability distribution is

1	2	3	4	5	6	7	8	9	10
0.0890	0.0900	0.2000	0.2460	0.1350	0.1300	0.0565	0.0500	0.0025	0.0010

CLO Project Thesis

- The underlying thesis for this project is that matching the RBC on the CLO tranches with the RBC of the underlying portfolio ensures that risk is conserved.
 - This is consistent with options pricing theory which uses risk neutral probabilities.
 - However, the current approaches effectively matches only the first moment of the distribution.
- Please note that if the work undertaken by the Academy and approved by the appropriate regulatory channels takes a different view, we will follow that approach.

Calculating the Risk of the Portfolio

- We calculated the risk for 1,851 CLOs in our database.
- We applied the appropriate RBC factor to each line item in the portfolio. Since the typical portfolio size in CLOs is in the 300-400 range, we assume that a portfolio adjustment was unnecessary.
- The results were retained in \$.
- The detailed results are available in the *risk_adhoc.csv* file.
 - The fist column is the unique Deal ID
 - The second column is the deal risk in \$

Probabilities - Initial Approach

- The initial approach to setting the probabilities was to simply generate a large number of probabilities, subject to the full constraints. This proved to be very computationally costly–
 - 2 hours of cloud computing could not generate a single valid distribution.
- As a result, the constraints were relaxed. This was still computationally expensive, but a number of scenarios were generated.
 - For example, in a cloud environment, 100 billion passes generated approx.. 500 valid relaxed distributions.

Full Constraints	Relaxed Constraints
P10<= 10bps P9 <= 25bps	P10<= 10bps P9 <= 25bps
Smoothness	Smoothness
P7 >= P8 >= P9 >= P10	P8 >= P9 >= P10 P3 >= P2 >= P1
P4 >= P3 >= P2 >= P1	

Probabilities - Hybrid Approach

- As a result of the computational expense, it was decided to take a hybrid approach to the optimization.
- Phase I Constrained Randomness
 - Generate a limited set of distributions using the relaxed constraints above
 - Select distribution which minimizes Mean Square Error (MSE)

Phase II - Human curation

• Try to minimize MSE "by hand" and select the winning distribution

Phase III - Local Randomness

- Create new distributions by multiplying by small perturbations ($P_{new} = P_{old} * \varepsilon_{norm}(0,\sigma)$)
- Select distribution which minimizes Mean Square Error (MSE)

Probabilities - Local Randomness

- In phase III, we sought to optimize the local solution found in Phase II above.
- Starting with the selected probability distribution ("winner"):
 - 1. Generate 10 normal error terms with a mean of 0 and a σ starting with 0.125.
 - 2. Multiply the winner by the error terms and normalize it to one.
 - 3. Calculate the MSE for the new distribution. If $MSE_{new} < MSE_{winner}$ then the set the new distribution as the new winner.
- This approach maintains the shape of the distribution

Matching Overview

- We calculated the RBC of the tranche for each probability distribution. The percentage loss was mapped to a Designation Category via Part 4 Section 28 of the P&P. The percentage was multiplied by the face value of the tranche to determine the \$ value of tranche risk.
- These values were then aggregated by deal.
 - For the purposes of matching only, the Equity tranche was assumed to be 100% multiplied by the implied value (all Assets + Cash all Liabilities).
- The "error" for each deal was the difference between the Liabilities and the Portfolio

 $(RBC_{Liab} - RBC_{Port})$

- The probability scenario which minimized the mean squared error was selected.
- This process was repeated for each new probability distribution.
- The selected probability explains 97% of the RBC risk in the portfolio (with Equity @100%).

Alternative Matching Assumptions

- A number of decisions were taken at this step which deserve attention
 - 1. We used 100% for Equity instead of 45% in the interim solution. This was done to avoid penalizing the senior debt tranches.
 - 2. We could also have used the probability weighted total loss on the tranches, however this would be inconsistent with the idea of a RBC match.
 - 3. The RBC of the tranches was set using the mid-point RBC as described in P&P. Alternatively, we could have used the RBC threshold, but that would not have been consistent with the treatment of R/CMBS.
 - 4. In calculating the error for each deal we used \$ instead of percentages. This had the effect of weighting the minimization term by deal size. The match could have been done by percentage.
- We are requesting Feedback on all of these items.

Feedback Requested

- 1. Feedback on the overall approach
- 2. Better Probability Distribution?
- 3. Addition of scenarios on the right? The current approach has difficulty in differentiating between AAA-A. Should more scenarios be added without adding more probability.
- 4. Matching Assumptions as described above:
 - Matching \$ vs %
 - Match RBC vs total loss
 - Use of Mid-point
 - Equity "RBC"

Next Steps

- Seeking formal or informal feedback
- Starting early next year we will endeavor to rerun all the deals with the new probabilities on a monthly basis.
 - We will also add the previously discussed methodology adjustments.
 - Add FE designations and updated Implied Equity Balance (added Cash Principal).

Appendix

• *losspercfinal.csv* layout

Columns	Name	Description
1	DEAL ID	Unique Deal Id
2	DEAL NAME	Deal Name
3	Equity	0/1 flag for Equity
4-13	SCEN_1 to SCEN_10	Percentage loss in each scenario
14	IMPLIED_EQUITY	Assets (incl Prin Cash) - other Liabilities
15	CLASS_FACE_VALUE	Current face value of the tranche