Welcome to the NAIC & FLASH Building Codes, Mitigation, and Resilience Funding State DOI Virtual Workshop

March 17, 2021

✓ All audio will be muted upon entry
✓ Unmute yourself to speak
✓ Use the “chat” feature for questions, comments or assistance
✓ If you have joined by phone, to mute and unmute your line, press *6
BUILDING CODE AND MITIGATION WORKSHOP STATE DOI SURVEY RESULTS
On a scale of 1 to 10, the state regulators rated the importance of quantitative evidence of the effectiveness of building codes/mitigation in reducing disaster losses as an average of 8.75 (7 rated it as a 10 meaning extremely important).

Most respondents either knew the current IRC or where to find it.

5 states responded that they are part of the code adoption and enforcement process.

2 states oversee building codes, 1 of those only in certain counties.

13 states know what state agency is responsible for overseeing building codes.

9 states reported a desire to be more engaged in building code adoption and enforcement.
In some states these may be mandated by statute, others may have optional discounts offered from insurers.

Insurance Incentives for Building Codes

- Yes: 7
- No: 7
- Unsure: 2

Insurance Incentives for Mitigation

- Yes: 6
- No: 6
- Unsure: 4

Majority of states either do not have, or are unsure if have, insurance incentives for building codes or mitigation
How familiar are you with FEMA’s Hazard Mitigation Grant Program?

How familiar are you with HUD’s community development block program?

How familiar are you with FEMA’s new Building Resilient Infrastructure and Communities (BRIC) Fund?
Does the DOI receive requests for information on building codes and/or mitigation programs from consumers?

- Frequently: 2
- Occasionally: 7
- Rarely: 5
- Never: 2

Does the DOI ever provide information and/or messaging to consumers about the following?

- Building Codes: 7
- Mitigation Options: 14
- Mitigation Funding: 9

Legend:
- Yes
- No
Building Codes, Mitigation, and Resilience Funding

State Department of Insurance Virtual Workshop

<table>
<thead>
<tr>
<th>Wednesday, March 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (Central)</td>
</tr>
<tr>
<td>Building Codes and Standards - Day One presentations will address the following design questions:</td>
</tr>
</tbody>
</table>

- How does the U.S. building code system work?
- What is the relevance of building codes and standards to insurance?
- What role can State Departments of Insurance play in advocating for stronger building codes?
- Which studies provide economic evidence in support of codes? |
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:10 pm – 2:00 pm</td>
<td>Building and Energy Code Adoption and Enforcement</td>
<td>Explanation of the process and framework for (building and energy) code adoption and enforcement. What codes cover in relation to perils, including evidence of avoided losses. Show where state participants fit into various models of statewide and local adoption and avenues for engagement.</td>
</tr>
</tbody>
</table>

- Building Code 101 – what is a code and what does it cover?
- Why do codes matter? What economic proof exists of cost benefit and losses avoided? (National Institute of Building Sciences—NIBS & FEMA studies)
- Code adoption process and avenues for State Department of Insurance engagement – state and local adoption; three-year update cycles. Examples of how model code development and adoption (IBC, IRC, Energy) are similar to the NAIC model law process.
- Building above code – how insurance industry science is creating the “code future” (sealed roof deck example)

Presenters:
1. Sara Yerkes, Senior Vice President of Government Relations – International Code Council (ICC)
2. Ryan Colker, Vice President of Innovation – ICC
3. Dr. Anne Cope, Chief Engineer – Insurance Institute for Business and Home Safety (IBHS)
VISION: Protect the health, safety and welfare of people by creating safe buildings and communities.

MISSION: To provide the highest quality codes, standards, products and services for all concerned with the safety and performance of the built environment.
Organization

• Nonprofit corporation
• Committed to making buildings safe to protect people and preserve properties
• Develops and maintains building safety codes/standards used to design, construct and maintain residential/commercial buildings
• Headquartered in Washington, D.C.
• 64,000+ members and 394 Chapters
• Staff of more than 500 engineers, architects, advocacy and administrators
The Family of Building & Community Solutions

- Codes and Standards
- Personnel Training and Certification
- Product Evaluation
- Accreditation Services
- Codification & Administration Services
- Engineering Support
- Community Resilience Benchmarks®
- Third-Party Evaluation Services
The Family of Model Codes

- International Building Code (IBC)
- International Fire Code (IFC)
- International Mechanical Code (IMC)
- International Plumbing Code (IPC)
- International Residential Code (IRC)
- International Energy Conservation Code (IECC)
- International Existing Building Code (IEBC)
- International Fuel Gas Code (IFGC)
- International Property Maintenance Code (IPMC)
- International Private Sewage Disposal Code (IPSDC)
- International Zoning Code (IZC)
- International Wildland-Urban Interface Code (IWUIC)
- ICC Performance Code (ICCPC)
- International Green Construction Code (IgCC)
- International Swimming Pool and Spa Code (ISPSC)
International Code Development Process

I-Code Development Cycle

- Online Government Consensus Vote (OGCV)
- Proposed Code Changes Submitted
- Proposed Code Change Agenda Published
- Committee Action Hearing (CAH)
- Online CAH Assembly Floor Motion Vote
- CAH Results Published
- Public Comments Period
- Public Comment Agenda Published
- Public Comment Hearing (PCH)
- New Edition Published
- Implemented
IECC Development (2024 and beyond)

• Developed using standards process.
 – New Scope and Intent.
 – Commercial & Residential Committees
 – Balance of interests:
 • 1/3 Government Regulators.
 • 8 other interest categories.
 – Public submission of code change proposals, consideration in public forum.
 – Committee and working groups allow deliberation, consensus.
 – Continuous maintenance to capture new technologies user needs.
The Value of I-Codes

- Consensus-based code development process, the International Codes (I-Codes) are highly regarded and used in all 50 U.S. states, Federal agencies and in other countries.

- I-Codes form regulatory framework for construction and safety regulations.

- Buildings built to updated codes incorporate the latest technology and provide the safest, most resilient structures for our families and communities to protect against building failures, hurricanes, tornadoes, floods, high-rise fires and other modern-day disasters.

- Updated codes save time and resources after a disaster. The National Institute of Building Sciences released a study that found that adoption of the 2018 I-Codes generates a national benefit of $11 for every $1 invested.

- As technology around the building trades evolves and becomes more advanced, so do the I-Codes. Every three years, the Code Council updates the model codes to ensure that the codes reflect the latest innovations in building science.
• The *International Building Code* is a model code that applies to the construction, *alteration*, relocation, enlargement, replacement, *repair*, equipment, use and occupancy, location, maintenance, removal and demolition.

• The IBC addresses structural strength, means of egress, sanitation, adequate lighting and ventilation, accessibility, energy conservation and life safety in new and existing buildings, facilities and systems.

• The codes are updated on a 3-year cycle to allow for new construction methods and technologies to be incorporated into the codes.
• There is no one size fits all under the definition of statewide adoption or home rule.

• Some states adopt statewide for state owned or funded buildings;

• Some states adopt statewide for all buildings;

• Some states adopt at the local level;

• Some states allow locals to make more restrictive provisions in the codes;

• 43 states have codes adopted statewide;

• Several states only adopt certain codes statewide, i.e. IECC.
The International Building Code (09-21 editions) is adopted as a statewide code in 42 states, and as a local code in the remaining 7, as well as the District of Columbia. Texas adopts the 2003 IBC.
The IRC applies to the construction, alteration, movement, enlargement, replacement, repair, equipment, use and occupancy, location, removal and demolition of detached one- and two-family dwellings and townhouses not more than three stories above grade plane in height.

The IRC was created to serve as a complete, comprehensive code regulating the construction of single-family houses, two-family houses (duplexes) and buildings consisting of three or more townhouse units.

A separate code also allows for residential and nonresidential code provisions to be distinct and tailored to the structures that fall within the appropriate code’s scope, and makes finding relevant code provisions simpler for residential occupants/buildings.

The IRC contains coverage for all components of a house or townhouse, including structural components, fireplaces and chimneys, thermal insulation, mechanical systems, fuel gas systems, plumbing systems and electrical systems.
The International Residential Code (09-21 editions) is adopted as a statewide code in 39 states, and as a local code in 9, as well as the District of Columbia. Texas adopts the 2000 IRC. Wisconsin has a home grown residential code.
US Code Adoption Database

For code adoption by location, select a state from map or use the search field below. For information about building codes and standards used internationally, visit the Global Building Codes Tool.

- https://codeadoptions.iccsafe.org/
- Find code adoption information at the state and local level
- Color coded adoption maps for each I-Code
Mitigation is Highly Cost Effective

<table>
<thead>
<tr>
<th>Natural Disaster</th>
<th>ADOPT CODE</th>
<th>ABOVE CODE</th>
<th>BUILDING RETROFIT</th>
<th>LIFELINE RETROFIT</th>
<th>FEDERAL GRANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverine Flood</td>
<td>6:1</td>
<td>5:1</td>
<td>6:1</td>
<td>8:1</td>
<td>7:1</td>
</tr>
<tr>
<td>Hurricane Surge</td>
<td>not applicable</td>
<td>7:1</td>
<td>not applicable</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Wind</td>
<td>10:1</td>
<td>5:1</td>
<td>6:1</td>
<td>7:1</td>
<td>5:1</td>
</tr>
<tr>
<td>Earthquake</td>
<td>12:1</td>
<td>4:1</td>
<td>13:1</td>
<td>3:1</td>
<td>3:1</td>
</tr>
<tr>
<td>Wildland-Urban Interface Fire</td>
<td>not applicable</td>
<td>4:1</td>
<td>2:1</td>
<td>not applicable</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Overall Benefit-Cost Ratio

Cost ($ billion)
- $1/year
- $4/year
- $16/year

Benefit ($ billion)
- $13/year
- $520
- $2200

www.nibs.org/mitigationsaves
• The IRC and IBC provided more than $27 billion in cumulative mitigation benefits against flood, hurricane wind, and earthquake hazards from 2000 to 2016. These benefits could have been doubled if all post-2000 construction adhered to the I-Codes.

• If construction continues at the pace the study observed and if the proportion of that construction adhering to the I-Codes is consistent with the trend the study identifies, the I-Codes could help communities avoid $132 billion to $171 billion in cumulative losses through 2040.

• If all new buildings across the U.S. were built to modern editions of the I-Codes, the country would save more than $600 billion by 2060.
BUILDING CODES: DRIVING GROWTH THROUGH INNOVATION, RESILIENCE AND SAFETY

RESILIENCE IN THE BUILDING CODES

Creating a resilient nation requires diligent planning and innovative thinking. Incorporating new technologies in current building practices to achieve higher resiliency is exciting but can be expensive. Thankfully, effectively utilizing current codes and standards throughout all phases of the building’s lifecycle increases the efficacy of new building technologies and offers a cost effective path toward community stability during times of disaster. Resilience starts with strong, regularly updated, and properly implemented building codes.

PLANNING

Creating a Sustainable Community

- Provisions in the I-Codes include sustainability measures for the entire construction project and its site making buildings more efficient and less economically and environmentally wasteful.
- Building sustainably has effects that go beyond the walls and into the community — for example, car charging stations make it easier to own eco-friendly vehicles and smart grid demand response systems lower energy prices for the consumer and increase grid stability for the surrounding area.

RESPONSE

Ensuring Mental & Physical Health and Wellbeing

- Provisions in the I-Codes address mental and physical health and well-being from dealing with sanitation and pest control to designing buildings that respond to the latest science on mood and mental health.

RECOVERY

Efficient Disaster Mitigation & Recovery

- Provisions in the I-Codes address disaster preparedness and recovery — from how and where to build in flood plains to constructing buildings that can both withstand natural and manmade disasters.
- A study done by the Congressionally established National Institute of Building Sciences showed that adopting up-to-date codes saves $1.11 for every $1 invested. FEMA analysis also found that if all new U.S. buildings were built to modern editions of the I-Codes, the country would save more than $600 billion by 2050.

RESILIENCE

Improving Building Life Cycles

- Provisions in the I-Codes enable changes to the systems inside the building or even the structure itself at some point after its initial construction and occupation including repair, alteration, change of occupancy, addition to and relocation of existing buildings.
- As communities change, so do the buildings they use. Updated codes allow buildings to adapt, keeping a sense of continuity while also reducing blight from outdated, unused buildings.

www.iccsafe.org
Resilience in the built environment starts with strong, regularly adopted, and properly administered building codes. However, to attain whole community resilience, communities must look at the resiliency of all interconnected systems and function of the community as well.
The scope of the IBC is clearly focused on assuring that a community’s building stock supports the resilience of the community. Reducing the impacts on people and property in the face of multiple shocks and stresses allows communities to survive and ultimately thrive.
Among management options offered to help mitigate the U.S. wildfire problem, the National Cohesive Strategy suggests that focusing on building codes supports the goal of making homes and other buildings more resistant to ignition.

The IWUIC recognizes the benefits of a holistic approach to addressing risks and enhancing community resilience. Protection from wildfires relies on a community-wide approach that engages multiple actors. Reliance on building-level measures alone will not provide the level of protection necessary.
Functional Recovery

Working definition:

Design and construction intended to result in a building for which post-earthquake structural and nonstructural capacity are maintained or can be restored to support the basic intended functions of the building’s pre-earthquake use and occupancy within a maximum acceptable time, where the maximum acceptable time might differ for various uses or occupancies.

- Advancing codes beyond life safety to address social and economic resilience.
- Requires focus beyond buildings to infrastructure services.
- Initially seismic, but principles applicable across hazards.

https://www.iccsafe.org/advocacy/seismic-functional-recovery/
Cities, states and the federal government have committed to energy or greenhouse gas emissions goals

<table>
<thead>
<tr>
<th>Pledge, Compact, Commitment, or Initiative</th>
<th>Number of Participating US Local Governments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Mayors</td>
<td>407</td>
</tr>
<tr>
<td>We are Still In</td>
<td>307</td>
</tr>
<tr>
<td>Ready for 100</td>
<td>148</td>
</tr>
<tr>
<td>Under2MOU</td>
<td>26</td>
</tr>
<tr>
<td>Bloomberg American Cities Climate Challenge</td>
<td>25</td>
</tr>
<tr>
<td>Rockefeller 100 Resilient Cities</td>
<td>24</td>
</tr>
<tr>
<td>2030 Districts</td>
<td>21</td>
</tr>
<tr>
<td>DOE Zero Energy Schools Accelerator</td>
<td>14</td>
</tr>
<tr>
<td>DOE Energy Accelerator</td>
<td>11</td>
</tr>
<tr>
<td>DOE Zero Energy Districts Accelerator</td>
<td>4</td>
</tr>
</tbody>
</table>

ACCEPTANCE ON BEHALF OF THE UNITED STATES OF AMERICA

I, Joseph R. Biden Jr., President of the United States of America, having seen and considered the Paris Agreement, done at Paris on December 12, 2015, do hereby accept the said Agreement and every article and clause thereof on behalf of the United States of America.

Done at Washington this 20th day of January, 2021.

JOSEPH R. BIDEN JR.
Leading the Way to Energy Efficiency: A Path Forward on Energy and Sustainability to Confront A Changing Climate

- New IECC scope and intent:
 - Pathways to zero energy
 - Energy efficiency and GHG reduction appendices
 - Cost effectiveness analysis
 - Continual improvements in energy savings

- Energy and GHG Reduction Resources:
 - Electric vehicle charging
 - Electrification
 - Grid interactions/efficiency
 - Renewable & storage integration

- Energy and Carbon Advisory Council

www.iccsafe.org/energy
Energy Codes are a Resilience Strategy

An Essential Resilience Issue: Designing for Future Risk
Building Safety Journal

Code Council launches global initiative on building resilience

NOVEMBER 22ND, 2019 by ICC

The International Code Council launched a new global initiative to bring together experts from the U.S., Australia, Canada and New Zealand to improve building resilience worldwide. This new collaborative forum provides a valuable opportunity for participants to discuss common struggles, and to share knowledge, research, and best practices, as they consider the role of building codes in resilience and durability in the face of increasingly severe weather events.

The Code Council hosted the first roundtable in Newport Beach, California, from October 29-30, 2019. The gathering included building code developers and experts in emergency management, climate science and resilience. The discussion was moderated by Alice Hill, Senior Fellow for Climate Change Policy at the Council on Foreign Relations. The group explored a broad range of issues such as extreme wind, rain, flooding, sea level rise, tidal surge, wildfires and heat stress, and how they create differing approaches to the regulation of buildings and building safety.

www.globalresiliency.org

The Use of Climate Data and Assessment of Extreme Weather Event Risks in Building Codes Around the World: Survey Findings from the Global Resiliency Dialogue

January 2021
Insurance Lessons Learned in the Codes
Thank you!! Questions?

- **Sara Yerkes**, Senior Vice President, Government Relations; syerkes@iccSAFE.org
- **Ryan Colker**, Vice President, Innovation & Executive Director, Alliance for National & Community Resilience; rcolker@iccSAFE.org
- **International Code Council**
 - 500 New Jersey Ave., NW
 - Sixth Floor
 - Washington, DC 20001
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
</table>
| 2:00pm – 2:20pm | State Advocacy for Enhanced Building and Energy Codes
 Mississippi to present on personal experience advocating for Statewide Building Codes, coordination with other state agencies, barriers and challenges encountered along the way, and how the state overcame any opposition.
 Presenter: Andy Case, Consumer Services Director – Mississippi Insurance Department |
Building Codes and the Connection to Insurance

The Building Code Effectiveness Grading Schedule (BCEGS®) assesses the building codes in effect at the community level and how well the community enforces its building codes, with special emphasis on mitigation of losses from natural hazards. BCEGS measures the resources and support made available to the enforcement of building codes. The BCEGS program assigns each community a BCEGS classification of 1 (exemplary commitment to building code enforcement) to 10. ISO develops advisory rating credits and provides participating insurers with classifications, data, and related underwriting information to inform risk decision-making.

- Basics of BCEGS
- Application and usage of BCEGS in insurance
- ISO/Verisk and State Department of Insurance engagement in communicating with community decision-makers and improving the effectiveness of building code adoption and enforcement

Presenter: Dale Thomure, Manager, Community Hazard Mitigation – ISO/Verisk
State DOI Virtual Workshop

Building Codes and the Connection to Insurance

The Building Code Effectiveness Grading Schedule (BCEGS®)

March 17th, 2021

Dale K. Thomure, CBO, CFM
Community Hazard Mitigation Manager - ISO
Building Code Effectiveness Grading Schedule (BCEGS®)

- Unique Industry Program
- Created by Insurance Industry and ISO in the mid-1990's
- Reviews building codes and enforcement efforts at the local level
- Three main focus areas:
 - Administration of Codes (54%)
 - Review of Building Plans (23%)
 - Field Inspections (23%)

- Aggregated into classifications of 1–10 for both Personal and Commercial Lines
- Filed for usage or licensed in every state
- Data and classifications 1996* to present
 - Address level application
 - Regular data refresh
 - Historic data specific to each evaluation year

BCEGS is designed to measures resources and support made available to the enforcement of building codes and the utilization of those resources at the community level.
Evaluation of Community-Level Enforcement

BCEGS Areas of Focus

<table>
<thead>
<tr>
<th>Code Administration</th>
<th>54%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopted Building Code</td>
<td></td>
</tr>
<tr>
<td>Adopted Sub-Codes</td>
<td></td>
</tr>
<tr>
<td>State and Local Code Amendments</td>
<td></td>
</tr>
<tr>
<td>Method of Code Adoption</td>
<td></td>
</tr>
<tr>
<td>Natural Hazards Impacting the Jurisdiction</td>
<td></td>
</tr>
<tr>
<td>Staff Training and Education</td>
<td></td>
</tr>
<tr>
<td>Certification of Staff</td>
<td></td>
</tr>
<tr>
<td>Qualification of the Building Official</td>
<td></td>
</tr>
<tr>
<td>Utilization of Design Professionals</td>
<td></td>
</tr>
<tr>
<td>Zoning and Land-Use Provisions</td>
<td></td>
</tr>
<tr>
<td>Contractor Licensing Programs</td>
<td></td>
</tr>
<tr>
<td>Public Awareness Programs</td>
<td></td>
</tr>
<tr>
<td>Appeals Process</td>
<td></td>
</tr>
<tr>
<td>Administrative Policies and Procedures</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance Programs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan Review</th>
<th>23%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Review Staffing</td>
<td></td>
</tr>
<tr>
<td>Experience of Plan Review Personnel</td>
<td></td>
</tr>
<tr>
<td>Detail of Plan Review</td>
<td></td>
</tr>
<tr>
<td>Management of Plan Review Activity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Inspection</th>
<th>23%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection Staffing</td>
<td></td>
</tr>
<tr>
<td>Experience of Inspection Personnel</td>
<td></td>
</tr>
<tr>
<td>Management of Inspection Activity</td>
<td></td>
</tr>
<tr>
<td>Inspection Checklists</td>
<td></td>
</tr>
<tr>
<td>Special Inspections</td>
<td></td>
</tr>
<tr>
<td>Inspections for Natural Hazard Mitigation</td>
<td></td>
</tr>
<tr>
<td>Final Inspections</td>
<td></td>
</tr>
<tr>
<td>Certificates of Occupancy</td>
<td></td>
</tr>
</tbody>
</table>

PL and CL Classifications

- Filed Advisory Rating Credits
- Advisory Loss-Costs

Database Storage of Granular Data Elements for Underwriting Usage

- Building Underwriting Reports

© 2017 Verisk Analytics, Inc. All rights reserved.
BCEGS is an Indicator of Community Vulnerability

Consider the two towns below:

Modern Building Code

Weakened or No Building Code

Effective Code Enforcement

Poor or No Code Enforcement

Class 1
Low Vulnerability

Class 10 or 99
High Vulnerability
In Loss-Cost Modeling – BCEGS is an Indicator of Building Vulnerability

Consider the two homes below:

Features of a Building
Built to Code

Features of a Building
Not Built to Code

Elements of Good
Code Enforcement

Poor or No Code
Enforcement

Class 1
Low

Class 10 or 99
High

Vulnerability
BCEGS Classifications – ISO States

Distribution of Building Code Enforcement Departments by BCEGS Classification – National Averages

<table>
<thead>
<tr>
<th>Classification</th>
<th>Personal Lines</th>
<th>Commercial Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05%</td>
<td>2.30%</td>
<td>0.10%</td>
</tr>
<tr>
<td>14.47%</td>
<td>14.10%</td>
<td>18.10%</td>
</tr>
<tr>
<td>34.67%</td>
<td>34.00%</td>
<td>34.00%</td>
</tr>
<tr>
<td>19.86%</td>
<td>18.20%</td>
<td>18.20%</td>
</tr>
<tr>
<td>6.76%</td>
<td>5.90%</td>
<td>5.90%</td>
</tr>
<tr>
<td>1.69%</td>
<td>2.50%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2.46%</td>
<td>1.30%</td>
<td>1.30%</td>
</tr>
<tr>
<td>14.92%</td>
<td>14.00%</td>
<td>14.00%</td>
</tr>
<tr>
<td>2.82%</td>
<td>2.80%</td>
<td>2.80%</td>
</tr>
</tbody>
</table>
BCEGS Data Usage and Applicability in the Insurance Marketplace

• ISO has filed advisory credits applicable to Wind and Seismic
 – BCEGS is an available factor in Advisory Loss-Cost and in Enhanced Wind Rating programs.
• ISO makes BCEGS information available to carriers for underwriting usage.
• BCEGS data is utilized in AIR Catastrophe Models
• BCEGS Classifications are necessary for credit in the FEMA/NFIP CRS Program applicable to flood insurance credits.
ISO Community Benchmark Reports
Hyper-Local Analysis of Enforcement Efforts

ISO provides every community with a detailed Benchmark Report. Benchmark Reports are local-facing and include peer comparisons to be utilized for department management efforts.
“A basis for first conversations with local decision-makers.”

- Second report on the State of Building Codes in the Nation
- Focused on the Human Element of Building Code Enforcement
- Insights powered by BCEGS Data and ISO Internal Expertise
- Insurer and Code Industry Facing Content
- Designed to provide actionable information to advance the cause of Community Resilience through Good Public Policy
- Partner and Subsidiary Content
 - FLASH
 - ICC
 - FEMA – Building Sciences Branch
 - AIR Worldwide, A Verisk Business
 - Wharton Risk Decision Processes Center, Austin College, National Center for Atmospheric Research (NCAR)
 - ISO Risk Engineering Group
 - Property Claim Service – PCS, A Verisk Business
Moving Forward – Collaboration

Let’s communicate with local decision-makers!

Code enforcement efforts are highly variable and are influenced by a number of factors.

<table>
<thead>
<tr>
<th>FACTORS INFLUENCING EFFECTIVE CODE ENFORCEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Level</td>
</tr>
<tr>
<td>Mandatory vs. Local Option Enforcement</td>
</tr>
<tr>
<td>State Code Development Cycles</td>
</tr>
<tr>
<td>State Code Amendments - Weakening</td>
</tr>
<tr>
<td>Limitations on Local Enforcement</td>
</tr>
<tr>
<td>Understanding of Natural Hazard Risk</td>
</tr>
<tr>
<td>Recognition of the Value of Code Enforcement</td>
</tr>
<tr>
<td>– Benefit vs. Cost</td>
</tr>
</tbody>
</table>
| 2:55pm – 3:00pm | Day One Wrap-Up and Concluding Remarks
Presenter: Bruce R. Ramge, CPCU, CIE, Director – Nebraska Department of Insurance |