CONFIDENTIALITY

Our clients’ industries are extremely competitive, and the maintenance of confidentiality with respect to our clients’ plans and data is critical. Oliver Wyman rigorously applies internal confidentiality practices to protect the confidentiality of all client information.

Similarly, our industry is very competitive. We view our approaches and insights as proprietary and therefore look to our clients to protect our interests in our proposals, presentations, methodologies, and analytical techniques. Under no circumstances should this material be shared with any third party without the prior written consent of Oliver Wyman.

© Oliver Wyman
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ID</th>
<th>SECTION TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXECUTIVE SUMMARY</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>VM-21 REFRESHER</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>MODEL AND SCENARIO SETS</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>MODEL OFFICE RESULTS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>APPENDIX</td>
<td>26</td>
</tr>
</tbody>
</table>
SECTION 1
EXECUTIVE SUMMARY
MODEL AND MODEL OFFICE DEVELOPMENT AND ANALYSIS

Oliver Wyman developed a variable annuity ("VA") AXIS model and “model office toolkit”, with the goal of developing a model with adjustable driving characteristics to explain field test results and analyze potential candidate scenario sets.

Model build
- VA model developed in AXIS
- Model office creation tool accepts user input regarding benefits and demographics to quickly generate reserves and capital for different archetypes
- Validation tools are used alongside model to ensure accuracy of results

Archetype analysis
- Defined driving characteristics and developed 16 archetypes that make up the model office
- Generated model office testing results based on scenario set 1a\(^1\) from the first GOES field test
- Learnings from model office analysis used to draw additional insights into field test results

Model office GOES impact analysis
- For the second GOES field test, selected 3 of the 16 key archetypes to be representative of a hypothetical industry participant
- Produced results based on AAA ESG, the 5 required scenario sets for the field test (Set 1-5), and the alternative baseline scenario (Set 6)\(^2\)
- Analyzed results and underlying scenarios to understand the drivers of impact

1: GEMS Baseline Equity and Corporate model scenarios and Conning Treasury model calibration with generalized fractional floor as of 12/31/21
2: All scenarios are as of 12/31/2023. See slide 15 on descriptions of the scenarios

© Oliver Wyman
EXECUTIVE SUMMARY: MODEL OFFICE GOES IMPACT ANALYSIS

The targeted model office was used to draw insights into field test results and develop a better understanding of how the GOES algorithm impacts projections under a range of starting economic conditions.

Analysis performed

Leveraged prior archetype analysis to select 3 key cohorts to analyze under the new field test scenario sets:

1. Mature business / Strong guarantee / At-the-money
2. New business / Strong guarantee / Out-of-the-money
3. New business / Weak guarantee / In-the-money

Produced CTE70 and CTE98 results to analyze changes in VM-21 reserves and capital requirements, consistently with field test requirements. A 1,000 scenario subset was picked based on the significance criteria and all results were produced for 12/31/2023 valuation date.

Key takeaways

1. Set 1 produces higher reserves than the AAA ESG:
 Analysis of tail scenario confirmed that accumulated Gross Wealth Factors (“GWF”) are lower in the Set 1 results than in the AAA ESG scenarios and interest rates are lower in earlier years, both of which lead to higher CTEs.

2. Sensitivity scenario sets produced impacts consistent with expectations:
 Lower yield curves lead to higher reserves due to lower reinvestment income, and vice versa; lower equity returns increase reserves due to guarantees becoming more in-the-money.

3. Alternative baseline produces higher reserves than Set 1:
 The proposed adjustments to the fit of the yield curve produced higher reserves, given that reinvestment rates are tied to the 10-year Treasury rates and longer tenors do not impact reinvestment rates.

CTE70 (adjusted) in excess of CSV by scenario set
Economic scenarios: AAA, GOES Scenario Sets 1-5, alternative baseline
SECTION 2
VM-21 REFRESHER
VM-21 RESERVE REFRESHER: RESERVE COMPONENTS

The primary component of VM-21 reserves is the stochastic reserves, which is based on scenario reserves floored at the CSV

1. **Stochastic reserves**
 - Combination of two CTE70s based on different scenario reserves
 - Hedged, i.e., CTE (best efforts)
 - Unhedged, i.e., CTE (adjusted)
 - Adjusted for error factor
 - Simplified terms: Hedged results + Impact of hedging * error factor

2. **Scenario reserves overview**
 - **Scenario reserve** = Starting assets required to fund all future liability cash flows, with no intermediate deficiencies, for a given economic scenario
 - Building block to the stochastic reserve, made up of a set of scenario reserves
 - Calculated and recorded for each economic scenario (equity, bond fund, and interest rate)
 - Projected separately on both a hedged and unhedged basis, for a contract grouping
 - Floored at the cash surrender value

3. **Other VM-21 reserve components**

 Additional standard projection amount (“ASPA”)
 - Additional reserve held if company assumptions are too aggressive relative to prescribed assumptions

 Pre-tax IMR (“PIMR”)
 - Allocated PIMR attributed to assets selected

Initial model office testing resulted in an ASPA value of zero due to the buffer component; PIMR assumed to be zero
VM-21 RESERVE REFRESHER: STOCHASTIC RESERVE
The stochastic reserve is a combination of CTE70s from scenario reserves on a hedged and unhedged basis

Stochastic reserve = CTE70 (best efforts) + E × max[0, CTE70 (adjusted) – CTE70 (best efforts)]

Key takeaway: Hedged (best efforts) scenario reserves are less sensitive to underlying scenarios

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
</table>
| CTE70 (best efforts)| • CTE70 of scenario reserves (best efforts)
 • Scenario reserve calculation reflects future hedging strategy |
| CTE70 (adjusted) | • CTE70 of scenario reserves (adjusted)
 • Scenario reserve calculation does not reflect future hedging strategy |
| Error factor (E) | • Accounts for potential overstatement of the impact of the hedging strategy
 • Between 5% - 100% based on the model's level of sophistications and its ability to reflect the parameters of the hedging strategy |
CHANGE IN EXCESS VS CHANGE IN TOTAL SCENARIO RESERVE

Reserves in excess of CSV is the “true” measure of financial impact and more reactive to scenario changes; total reserves do not move much relatively due to CSV being a large component and not impacted by scenarios.

Worst 300 of 1000 adjusted scenario reserves

Set1 = colored lines, AAA = gray lines

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Scenario reserve position relative to the CSV floor</th>
<th>Average increase in unfloored scenario reserve</th>
<th>Increase excess reserve</th>
<th>Increase in total reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inforce, in-the-money</td>
<td>High</td>
<td>4%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Newly issued</td>
<td>Low</td>
<td>0.2%</td>
<td>450%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Larger difference when scenario reserves are low relative to the CSV floor.
MODEL COMPONENTS AND FUNCTIONALITY

<table>
<thead>
<tr>
<th>Component</th>
<th>Description of functionality</th>
</tr>
</thead>
</table>
| **Liability modeling** | • Liability cash flows for model office comprised of the following product features:

 – Base variable annuity contract and a variety of GMxB (GLWB, GMDB, GMIB) with typical features and charges
 • Modeled on a direct basis only (i.e., without reinsurance) |
| **Asset modeling** | • Guardrail VM-21 prescribed strategy: 10-year bonds with ratings A and AA consistent with the guardrail prescribed under VM-21 |
| **Calculations** | • Outer loop cash flows under best estimate assumptions and input deterministic scenarios
 • Pre-tax asset and liability projections under input stochastic scenarios reflecting all cashflows under prudent best estimate and VM-21 prescribed assumptions
 • Inforce asset iteration at valuation date under input stochastic scenarios to achieve no GPVAD
 • Fair value of living benefit riders on annual timesteps to support implicit hedging approach |
| **Assumption sets** | • Best estimate
 • Prudent best estimate
 • VM-21 standard projection prescribed |
| **Hedging** | • Employs the "cost of reinsurance" method (i.e., implicit method) in the best efforts run, option cost is charged at time 0 and rider fees and claims are removed |
| **Reporting** | • Stochastic reserve (CTE70 pre-tax under adjusted and best efforts hedge)
 • Standard projection add-on under CTEPA method (CTE70 under prescribed in excess of SR, subject to CTE70 – CTE65 unfloored buffer)
 • C3 at 100% RBC (CTE98 pre-tax and subsequent calculations). Note: C3 will be unsmoothed |
DRIVING CHARACTERISTICS: SPECIFICATIONS

In-force archetypes were created using a model office creation toolkit and varied by driving characteristics. A wide range was used in determining variation in driving characteristics in order to capture a range of impacts to compare against field testing.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Variations</th>
<th>Values</th>
</tr>
</thead>
</table>
| GMWB guarantee strength | Weak | Rollup rate: 3%
Income rates: 4.0% - 5.5% based on attained age |
| | Strong | Rollup rate: 7%
Income rates: 5.5% - 7.0% based on attained age |
| Hedging | Hedged | Hedge modeling: Implicit method |
| | Unhedged | Hedge modeling: None |
| Block maturity | New | Issue year: 2022
Average age: 66
Percentage of GMWB contracts taking income: 20% |
| | Mature | Issue year: 2007
Average age: 75
Percentage of GMWB contracts taking income: 75% |
| Moneyness | OTM / ATM / ITEM | OTM: Benefit Base is 90%-100% of AV
ATM: Benefit Base is 100%-110% of AV
ITM: Benefit Base is 110%-140% of AV |
| Other | Static inputs | M/F sex split: 50/50
Q/NQ split: 65/35
Equity allocation: 70% |
IN-FORCE ARCHETYPES: GMWB/GMDB COMBO

16 different GMWB/GMDB combo archetypes were used in the initial model office testing. 3 cohorts outlined below are the focus for this analysis, based on their representativeness of industry results.

<table>
<thead>
<tr>
<th>Archetype</th>
<th>LB rider</th>
<th>DB rider</th>
<th>Hedging</th>
<th>Guarantee strength</th>
<th>Block maturity</th>
<th>Moneyness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Strong</td>
<td>New</td>
<td>ITM</td>
</tr>
<tr>
<td>2</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Strong</td>
<td>New</td>
<td>OTM</td>
</tr>
<tr>
<td>3</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Strong</td>
<td>Mature</td>
<td>ITM</td>
</tr>
<tr>
<td>4</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Strong</td>
<td>Mature</td>
<td>ATM</td>
</tr>
<tr>
<td>5</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Weak</td>
<td>New</td>
<td>ITM</td>
</tr>
<tr>
<td>6</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Weak</td>
<td>New</td>
<td>OTM</td>
</tr>
<tr>
<td>7</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Weak</td>
<td>Mature</td>
<td>ITM</td>
</tr>
<tr>
<td>8</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>Implicit</td>
<td>Weak</td>
<td>Mature</td>
<td>ATM</td>
</tr>
<tr>
<td>9</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Strong</td>
<td>New</td>
<td>ITM</td>
</tr>
<tr>
<td>10</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Strong</td>
<td>New</td>
<td>OTM</td>
</tr>
<tr>
<td>11</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Strong</td>
<td>Mature</td>
<td>ITM</td>
</tr>
<tr>
<td>12</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Strong</td>
<td>Mature</td>
<td>ATM</td>
</tr>
<tr>
<td>13</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Weak</td>
<td>New</td>
<td>ITM</td>
</tr>
<tr>
<td>14</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Weak</td>
<td>New</td>
<td>OTM</td>
</tr>
<tr>
<td>15</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Weak</td>
<td>Mature</td>
<td>ITM</td>
</tr>
<tr>
<td>16</td>
<td>Rollup GMWB</td>
<td>ROP GMDB</td>
<td>None</td>
<td>Weak</td>
<td>Mature</td>
<td>ATM</td>
</tr>
</tbody>
</table>

Focus for this analysis
FIELD TEST SCENARIO SETS

Model office testing was performed on field test scenario sets 1-6, including the alternative baseline

<table>
<thead>
<tr>
<th>Field Test Run</th>
<th>Scenario Sets</th>
<th>Inforce Assets and Liabilities</th>
<th>Comparison Scenario set</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>AAA ESG as of 12/31/2023</td>
<td>As of 12/31/23</td>
<td></td>
</tr>
<tr>
<td>Set 1 – GOES Baseline</td>
<td>Conning scenarios as of 12/31/23</td>
<td>As of 12/31/23</td>
<td>Baseline (AAA)</td>
</tr>
<tr>
<td>Set 2 – Low Rate Shock</td>
<td>Conning scenarios with a starting UST yield curve as of 3/9/20 but with 12/31/23 starting credit spreads.</td>
<td>As of 12/31/23</td>
<td>Set 1</td>
</tr>
<tr>
<td>Set 3 – Up Rate Shock</td>
<td>Conning Scenarios with a starting UST yield curve as of 10/31/89 but with 12/31/23 starting credit spreads.</td>
<td>As of 12/31/23</td>
<td>Set 1</td>
</tr>
<tr>
<td>Set 4 – Normal Yield Curve</td>
<td>Conning scenarios with a starting UST yield curve as of 12/31/04 but with 12/31/23 starting credit spreads.</td>
<td>As of 12/31/23</td>
<td>Set 1</td>
</tr>
<tr>
<td>Set 5 – Down Equity Shock</td>
<td>Conning scenarios as of 12/31/23 (same as Field Test 1)</td>
<td>As of 12/31/23, but modified for a 25% drop in equity markets</td>
<td>Set 1</td>
</tr>
<tr>
<td>Set 6 – Alternative Baseline</td>
<td>Conning scenarios as of 12/31/23 but with the alternative yield curve fitting proposed by ACLI</td>
<td>As of 12/31/2023</td>
<td>Set 1</td>
</tr>
</tbody>
</table>
SECTION 4
MODEL OFFICE RESULTS
BASELINE SCENARIOS – RESERVES COMPARISON

Comparison of VM-21 reserves in excess of CSV for all three cohorts, outlining the difference between the AAA ESG, the GOES baseline, and the alternative baseline reserves.

VM21 CTE (best efforts) ("BE") and CTE (adjusted) ("Adj") reserves in excess of CSV

CTE70 (adjusted) by archetype (000s)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New / Weak / ITM</td>
<td>540</td>
<td>1,223</td>
<td>1,542</td>
<td>126%</td>
<td>26%</td>
</tr>
<tr>
<td>New / Strong / OTM</td>
<td>171</td>
<td>693</td>
<td>876</td>
<td>303%</td>
<td>26%</td>
</tr>
<tr>
<td>Mature / Strong / ATM</td>
<td>145</td>
<td>509</td>
<td>684</td>
<td>251%</td>
<td>34%</td>
</tr>
</tbody>
</table>

GOES Set 1 produces higher reserves than the AAA ESG as a result of compressed equity returns in the tail and lower Treasury rates in early durations. The alternative baseline produced similar but slightly more adverse results than Set 1.
BASELINE SCENARIOS – SCENARIO ANALYSIS – NEW / WEAK / ITM COHORT

Comparison of average accumulated gross wealth factors ("GWF") and 10-Year Treasury curve for CTE70 and CTE98 scenarios over 50 years of projection for the New / Weak Guarantee / ITM cohort

New / Weak Guarantee / ITM Cohort

Average equity return from GOES scenarios is similar to AAA ESG at the CTE70 level, however tail scenarios are more adverse; lower GOES rates in earlier years are producing adverse results despite reverting to a higher mean in later years.
BASELINE SCENARIOS – SCENARIO ANALYSIS – NEW / STRONG / OTM COHORT

Comparison of average accumulated gross wealth factors (“GWF”) and 10-Year Treasury curve for CTE70 and CTE98 scenarios over 50 years of projection for the New / Strong Guarantee / OTM cohort

New / Strong Guarantee / OTM Cohort

Average equity return from GOES scenarios is similar to AAA ESG at the CTE70 and CTE98 levels, however tail scenarios for GOES are more adverse; lower GOES rates in earlier years are producing adverse results despite reverting to a higher mean in later years
BASELINE SCENARIOS – SCENARIO ANALYSIS – MATURE / STRONG / ATM COHORT

Comparison of average accumulated gross wealth factors (“GWF”) and 10-Year Treasury curve for CTE70 and CTE98 scenarios over 50 years of projection for the Mature / Strong Guarantee / ATM cohort

Mature / Strong Guarantee / ATM Cohort

Average equity return from GOES scenarios is similar to AAA ESG at the CTE70 and CTE98 levels but more disbursed and adverse in the tail; lower GOES rates in earlier years are producing adverse results despite reverting to a higher mean in later years.
SENSITIVITY SCENARIOS – RESERVES (SET 2)

Comparison of VM-21 reserves in excess of CSV for all three cohorts, outlining the difference between the GOES baseline, and the low starting yield curve scenario set reserves.

VM21 CTE (best efforts) (“BE”) and CTE (adjusted) (“Adj”) reserves in excess of CSV

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Set 1 [A]</th>
<th>Set 2 [B]</th>
<th>((B) – [A]) / [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>New / Weak / ITM</td>
<td>1,223</td>
<td>4,304</td>
<td>251%</td>
</tr>
<tr>
<td>New / Strong / OTM</td>
<td>693</td>
<td>2,741</td>
<td>295%</td>
</tr>
<tr>
<td>Mature / Strong / ATM</td>
<td>509</td>
<td>2,199</td>
<td>331%</td>
</tr>
</tbody>
</table>

The Set 2 scenarios are producing significantly higher reserves than the baseline scenario set due to the compressed yield curve and high prevalence of negative interest rates for sustained periods.
SENSITIVITY SCENARIOS – RESERVES (SET 3)

Comparison of VM-21 reserves in excess of CSV for all three cohorts, outlining the difference between the GOES baseline, and the high starting yield curve scenario set reserves.

VM21 CTE (best efforts) ("BE") and CTE (adjusted) ("Adj") reserves in excess of CSV

CTE70 (adjusted) by archetype (000s)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New / Weak / ITM</td>
<td>1,223</td>
<td>121</td>
<td>-91%</td>
</tr>
<tr>
<td>New / Strong / OTM</td>
<td>693</td>
<td>50</td>
<td>-93%</td>
</tr>
<tr>
<td>Mature / Strong / ATM</td>
<td>509</td>
<td>5</td>
<td>-99%</td>
</tr>
</tbody>
</table>

The Set 3 scenarios are producing significantly lower reserves than the baseline scenario set due to the favorable yield curve; we note that a significant portion of scenario reserves are floored at the CSV under this sensitivity.
SENSITIVITY SCENARIOS – RESERVES (SET 4)

Comparison of VM-21 reserves in excess of CSV for all three cohorts, outlining the difference between the GOES baseline, and the non-inverted yield curve scenario set reserves

VM21 CTE (best efforts) ("BE") and CTE (adjusted) ("Adj") reserves in excess of CSV

CTE70 (adjusted) by archetype (000s)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New / Weak / ITM</td>
<td>1,223</td>
<td>947</td>
<td>-23%</td>
</tr>
<tr>
<td>New / Strong / OTM</td>
<td>693</td>
<td>556</td>
<td>-18%</td>
</tr>
<tr>
<td>Mature / Strong / ATM</td>
<td>509</td>
<td>339</td>
<td>-33%</td>
</tr>
</tbody>
</table>

The Set 4 scenarios are producing slightly lower reserves than the baseline scenario set due to slightly higher yields from the non-inverted curve; the reinvestments are anchored to 10-year A & AA Corporate Bond returns.
SENSITIVITY SCENARIOS – RESERVES (SET 5)

Comparison of VM-21 reserves in excess of CSV for all three cohorts, outlining the difference between the GOES baseline, and the 25% equity shock scenario set reserves.

VM21 CTE (best efforts) (“BE”) and CTE (adjusted) (“Adj”) reserves in excess of CSV.

CTE70 (adjusted) by archetype (000s)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New / Weak / ITM</td>
<td>1,223</td>
<td>5,016</td>
<td>310%</td>
</tr>
<tr>
<td>New / Strong / OTM</td>
<td>693</td>
<td>2,726</td>
<td>293%</td>
</tr>
<tr>
<td>Mature / Strong / ATM</td>
<td>509</td>
<td>2,899</td>
<td>469%</td>
</tr>
</tbody>
</table>

A 25% decrease to the S&P 500 market has a significant impact to results due to the significant immediate increase to the moneyness and decrease in fee base, pushing more scenario reserves beyond the CSV floor.
SENSITIVITY SCENARIOS – SCENARIO ANALYSIS

Comparison of 10-Year Treasury curve for CTE70 scenarios for all scenario sets. The new / weak guarantee / ITM cohort is shown below. Scenario distributions for other archetypes are very similar and thus not shown.

New / Weak Guarantee / ITM Cohort

10-year Treasury rates in earlier years are consistent with the shocks and are largely the driver of reserve impact; over time, all scenarios converge to similar long-term average due to mean reversion.
APPENDIX

GOES PRESENTATION 2/17/2024 - PHASE 1 RESULTS
NAIC GOES MODEL OFFICE ANALYSIS

Phase 1 results

February 7, 2024

A business of Marsh McLennan
SECTION 1
BACKGROUND | PHASE 1 EXECUTIVE SUMMARY
SECTION 1.1

BACKGROUND
Overview of progress to date

In 2022, a field test examining alternative economic scenario sets under statutory reserve and capital frameworks was conducted across life insurance and annuity products. The results highlighted the expected impact to the industry but left open questions regarding the company-specific drivers of changes in the reserves over cash surrender value. Model office analysis will be performed alongside an unaggregated field test to analyze new GOES candidate scenario sets.

2022 GOES Field Test summary and limitations

Field test summary

✔ Between the baseline and field test runs, there was typically a wide range of impacts across participants with some experiencing small changes and others seeing significant increases in excess reserves (“reserves in excess of cash surrender value”) and/or capital.

✔ Certain drivers of variation in results across participants were identified, such as variable annuity hedging practices and the relationship of VM-20 modeled reserves to net premium reserves.

Limitations

✘ Resource intensive for companies to participate and for NAIC to compile results
✘ Lack of transparency in to understanding individual company results
✘ Limited participation for certain products/frameworks resulted in unknown applicability to overall industry

Two components for evaluating GOES scenario sets

1. Model office analysis (see next page)
 - Phase 1: Proof of concept, variable annuity model office developed to capture a range of archetypes and assist with explaining field test variation and demonstrate potential industry impacts. AXIS model used to run archetypes under both the AAA and Conning 1a scenarios as of 12/31/2021.
 - Phase 2: Expand archetypes to represent typical in-force VA blocks across additional scenario sets; expand model office development and analysis to life insurance.

2. Unaggregated GOES Field Test
 - Candidate scenario sets are planned to be developed ahead of the 2024 NAIC Spring National Meeting for use in model office testing and in an unaggregated field test where results will be presented by participants in regulator only sessions.
 - In the interim, as promising scenario sets are developed and vetted, they will be released publicly for companies to test.
Oliver Wyman developed a variable annuity ("VA") AXIS model and "model office toolkit" in a proof-of-concept exercise, with the goal of developing a model with adjustable driving characteristics to explain field test results and analyze potential candidate scenario sets.

Model build (Phase 0)

- VA model developed in AXIS
- Model office creation tool accepts user input regarding benefits and demographics to quickly generate reserves and capital for different archetypes
- Validation tools are used alongside model to ensure accuracy of results

Proof of concept (Phase 1)

- Defined **driving characteristics** and developed **archetypes** that make up model office
- Generated model office testing results across a range of archetypes, for Test #1a², to produce a wide range of results
- Learnings from model office analysis used to draw additional insights into field test results

Expanded analysis (Phase 2)

Potential areas identified

- Analyze combinations of archetypes to better represent a hypothetical industry participant
- Include additional scenario analysis, including candidate scenario testing
- Expand archetype analysis to examine additional potential drivers

1: GEMS Baseline Equity and Corporate model scenarios and Conning Treasury model calibration with generalized fractional floor as of 12/31/21

© Oliver Wyman
SECTION 1.2
PHASE 1 EXECUTIVE SUMMARY
EXECUTIVE SUMMARY: PROOF OF CONCEPT (PHASE 1)

Phase 1 model office produced a similar range of results to field testing and was used to draw additional insights into field test results.

Analysis performed

Identified moneyness, guarantee strength, block maturity, and hedging approach as potential driving characteristics of variance in VM-21 reserves under different economic scenario sets; developed a model office of 16 GMWB/GMDB archetypes and 6 GMDB archetypes to analyze these drivers and compare against field testing.

Produced results for change in reserve metrics (VM-21) and capital levels (C3P2) consistent with field testing, Test #1a, using the 1,000 scenarios set comparing AAA vs Conning 1a scenarios as of 12/31/2021.

Key takeaways

1 Consistency of results
 The range of results produced from initial model office testing compare well to field testing: Model office approach is a viable solution to supplement unaggregated GOES field testing and future industry impact testing for variable annuities.

2 Metrics and analysis
 In addition to the change in excess reserve, the primary metric used in field testing, the total change in reserve should be considered when interpreting field test results: Change in excess reserves better highlights the financial impacts while change in total reserves better highlights the impact to the underlying scenario reserves.

3 Drivers of results
 Differing archetypes and hedging strategies will produce a wide range of results: Differing block characteristics will impact scenario sensitivity and interaction with the CSV floor. Hedged blocks will generally be less sensitive to changes in scenarios since they are hedging the market risk.

Model office compared to field test: change in reserve levels

Economic scenarios: Conning 1a vs AAA

1 Results capped at 500%. Decrease in reserve is a DB only archetype that had zero scenario reserves in excess of CSV for Conning 1a but had one scenario reserve in excess of CSV for AAA.
CHANGE IN EXCESS VS CHANGE IN TOTAL SCENARIO RESERVE

Change in excess reserves highlights the financial impacts and is heavily influenced by the CSV floor; change in total reserves highlights the impact to the underlying scenario reserves.

Worst 300 of 1000 adjusted scenario reserves
Conning 1a = colored lines, AAA = gray lines

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Scenario reserve position relative to the CSV floor</th>
<th>Average increase in unfloored scenario reserve</th>
<th>Increase excess reserve</th>
<th>Increase in total reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inforce, in-the-money</td>
<td>High</td>
<td>4%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Newly issued</td>
<td>Low</td>
<td>0.2%</td>
<td>450%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Larger difference when scenario reserves are low relative to the CSV floor.
Section Summary

Section 2

VM-21 & GMXB refresher

VM-21
- Overview of the scenario reserves and stochastic reserve calculation used in VM-21
- Highlight differences between hedged (“best efforts”) and unhedged (“adjusted”) scenario reserve runs

GMXB
- Overview of GMWB and GMDB riders used in model office testing
- Highlights how equity and interest rate scenarios impact the GMXB benefit

Section 3

Model office development and analysis

- Overview of the key driving characteristics and archetypes developed
- Demonstrates the impact the CSV floor has in determining the value of the change in excess reserve
- Illustrations of how archetype characteristics can impact scenario sensitivity and the relative position to the CSV

Analysis
- Shows range of results from model office testing compared to field testing in aggregate and across archetypes
- Provides explanation behind the variety of results seen in both model office testing and field testing
- Demonstrates the importance for considering both the change in excess reserve and the total change in reserve

Appendix

- Contains additional analysis and model specifications
- Overview of archetypes used in the model office testing
- Contains information on the Oliver Wyman team
SECTION 2.1
VM-21 REFRESHER
VM-21 RESERVE REFRESHER: RESERVE COMPONENTS

The primary component of VM-21 reserves is the stochastic reserves, which is made up of scenario reserves.

1. **Stochastic reserves**
 - Combination of two CTE70s based on different scenario reserves
 - Hedged
 - Unhedged
 - Adjusted for error factor
 - Simplified terms: Hedged results + Impact of hedging * error factor

2. **Additional standard projection amount ("ASPA")**
 - Additional reserve held if company assumptions are too aggressive relative to prescribed assumptions

3. **Pre-tax IMR ("PIMR")**
 - Allocated PIMR attributed to assets selected

Scenario reserves overview
- **Scenario reserve** = Starting assets required to fund all future liability cash flows, with no intermediate deficiencies, for a given economic scenario
- Building block to the stochastic reserve, made up of a set of scenario reserves
- Calculated and recorded for each economic scenario (equity, bond fund, and interest rate)
- Projected separately on both a hedged and unhedged basis, for a contract grouping
- Floored at the cash surrender value

Initial model office testing resulted in an ASPA value of zero due to the buffer component; PIMR assumed to be zero.
VM-21 RESERVE REFRESHER: STOCHASTIC RESERVE

The stochastic reserve is a combination of CTE70s from scenario reserves on a hedged and unhedged basis

\[
\text{Stochastic reserve} = \text{CTE70 (best efforts)} + E \times \max[0, \text{CTE70 (adjusted)} - \text{CTE70 (best efforts)}]
\]

Key takeaway: Hedged (best efforts) scenario reserves are less sensitive to underlying scenarios

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTE70 (best efforts)</td>
<td>• CTE70 of scenario reserves (best efforts)</td>
</tr>
<tr>
<td></td>
<td>• Scenario reserve calculation reflects future hedging strategy</td>
</tr>
<tr>
<td>CTE70 (adjusted)</td>
<td>• CTE70 of scenario reserves (adjusted)</td>
</tr>
<tr>
<td></td>
<td>• Scenario reserve calculation does not reflect future hedging strategy</td>
</tr>
<tr>
<td>Error factor (E)</td>
<td>• Accounts for potential overstatement of the impact of the hedging strategy</td>
</tr>
<tr>
<td></td>
<td>• Between 5% - 100% based on the model's ability to reflect the parameters of the hedging strategy</td>
</tr>
</tbody>
</table>
SECTION 2.2
GMXB REFRESHER
GMWB RIDER REFRESHER

Underlying equity and interest rate scenarios impact both the timing and discounted value of GMWB claims

GMWB illustration

![Diagram showing GMWB withdrawals and claims funded by the policy’s AV and a company](image)

GMWB details

<table>
<thead>
<tr>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model office</td>
</tr>
<tr>
<td>• Rollup GMWB</td>
</tr>
<tr>
<td>GMWB benefit</td>
</tr>
<tr>
<td>• Guarantees a withdrawal amount for life regardless of the account value</td>
</tr>
<tr>
<td>Impact of equity scenarios on GMWB value</td>
</tr>
<tr>
<td>• Impacts performance of equity funds in the VA contract</td>
</tr>
<tr>
<td>• Fund performance influences the timing of account value depletion when withdrawals become claims</td>
</tr>
<tr>
<td>Impact of interest scenarios on GMWB value</td>
</tr>
<tr>
<td>• Impacts performance of bond funds in the VA contract</td>
</tr>
<tr>
<td>• Impacts the present value of future claims</td>
</tr>
</tbody>
</table>
GMDB RIDER REFRESHER

Underlying equity and interest rate scenarios impact both the net amount at risk and discounted value of the death benefit guarantee.

ROP GMDB illustration

- Net amount at risk is equal to the ROP death benefit less the account value.

<table>
<thead>
<tr>
<th>GMDB details</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model office</td>
<td>• Return of Premium ("ROP") GMDB</td>
</tr>
<tr>
<td>ROP benefit</td>
<td>• Guarantees the death benefit will be at least equal to the premium deposited, adjusted for withdrawals</td>
</tr>
<tr>
<td>Impact of equity scenarios on GMDB value</td>
<td>• Impacts performance of equity funds in the VA contract • Fund performance determines the net amount of risk of the GMDB</td>
</tr>
<tr>
<td>Impact of interest scenarios on GMDB value</td>
<td>• Impacts performance of bond funds in the VA contract • Impacts the present value of future claims</td>
</tr>
</tbody>
</table>
KEY TAKEAWAYS: VM-21 AND GMXB REFRESHER

<table>
<thead>
<tr>
<th>Category</th>
<th>Takeaways</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VM-21 stochastic reserve</td>
<td>• The stochastic reserve is a CTE70 valuation based on underlying scenario reserves calculated with and without hedging (pg 12)</td>
</tr>
</tbody>
</table>
| 2 Scenario reserves | • Starting assets required to fund all future liability cash flows, with no intermediate deficiencies, for a given economic scenario *(pg 12)*
• Building blocks for the stochastic reserve *(pg 12-13)* |
| 3 Hedging | • Hedged scenario reserves are generally less sensitive to the underlying scenarios than unhedged scenario reserves *(pg 13)* |
| 4 GMXB riders | • GMWB riders provide a guaranteed withdrawal amount for life regardless of the account value; GMDB riders provide a guaranteed benefit upon death, regardless of the account value *(pg 15-16)*
• Exposure to underlying equity and interest rate scenarios is different depending on rider type, e.g., GMWB vs GMDB *(pg 15-16)* |

© Oliver Wyman
SECTION 3
MODEL OFFICE DEVELOPMENT & ANALYSIS
SECTION 3.1
MODEL OFFICE DEVELOPMENT
Observations from field testing

- A wide range of impacts was observed during field testing to the primary metric: increase in excess reserve, between the baseline ("AAA") and field test scenarios.
- Macro level observations, particularly how participants reflected future hedging strategies in VM-21, were identified as potential drivers of variance in field test results.

Objectives for Phase 1 model office development

- Utilize AXIS modeling software and Oliver Wyman’s model office development tool kit to develop a model capable of producing cash flows and VM-21 reserve/capital components.
- Develop potential driving characteristics of a liability profile to generate archetypes for model office.
- Evaluate macro level observations and use analysis of driving characteristics to develop additional insights into field test results.

Field test results: change in reserve levels

Economic scenarios: Conning 1a vs AAA

Wide range of results was not intuitive and required further investigations.

Total change in reserve not a focus of initial field test analysis.

1: Results capped at 500%.
Variable annuity model developed in AXIS to calculate VM-21 reserves at time 0; field testing was used to inform the rider types, moneyness and hedging characteristics included in the model office.

Model specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>• AXIS model</td>
</tr>
<tr>
<td></td>
<td>• 50-year projection period</td>
</tr>
<tr>
<td>Model assumptions</td>
<td>• Prudent assumptions developed using a mix of industry benchmarks, industry experience, and prescribed standard projection assumptions</td>
</tr>
<tr>
<td>VM-21 assumptions</td>
<td>• Direct iteration approach used to calculate scenario reserves</td>
</tr>
<tr>
<td></td>
<td>• Implicit method used for hedge modeling; 10% error factor</td>
</tr>
</tbody>
</table>

Model office development

- Defined **driving characteristics** to analyze characteristics that were not available to analyze in field test data
- Withdrawal and death benefit combo (GMWB/GMDB) was the focus based on prevalence in field test (see rider type and combination)
- Developed **16 GMWB combo archetypes** based on combinations of driving characteristics and 6 GMDB only archetypes

Driving characteristics of valuation results

<table>
<thead>
<tr>
<th>Rider type and combination from field test results</th>
<th>% of separate account value in field testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawal / death benefit combo (GMWB/GMDB)</td>
<td>42%</td>
</tr>
<tr>
<td>Death benefit only (GMDB)</td>
<td>Included in model office 41%</td>
</tr>
<tr>
<td>Income / death benefit combo (GMIB / GMDB)</td>
<td>9%</td>
</tr>
<tr>
<td>Other benefit combinations</td>
<td>9%</td>
</tr>
</tbody>
</table>

GMWB guarantee strength
- Strong
- Weak

Moneyness
- In-the-money (“ITM”)
- At-the-money (“ATM”)
- Out of-the-money (“OTM”)

Block maturity
- New
- Mature

Future hedging strategy
- Implicit hedging
- No hedging

Example archetype:

GMWB combo, newly issued, strong guarantee, ATM, hedged

1: Additional model specification in appendix 2. GMAB/GMDB were 0.4% of the other benefit combinations 3. See Appendix A

© Oliver Wyman
CTE70 IN EXCESS OF CASH SURRENDER VALUE ("CSV") FLOOR

A 1% change in underlying scenario reserves results in the largest percentage increase to CTE in excess of CSV when the cash surrender value floor is highest, as the excess is made up of only a few tail scenarios.

Worst 300 of 1000 scenario reserves ($BN)

CTE70\(^1\) in excess of CSV ($M)

<table>
<thead>
<tr>
<th>CSV ($BN)</th>
<th>Baseline</th>
<th>Baseline x 101%</th>
<th>Increase (%)</th>
<th>Number of S.R. > CSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>0.5</td>
<td>6</td>
<td>1100%</td>
<td>1</td>
</tr>
<tr>
<td>105</td>
<td>107</td>
<td>186</td>
<td>74%</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>685</td>
<td>916</td>
<td>34%</td>
<td>38</td>
</tr>
<tr>
<td>95</td>
<td>2,424</td>
<td>2,975</td>
<td>23%</td>
<td>103</td>
</tr>
<tr>
<td>0</td>
<td>96,282</td>
<td>97,245</td>
<td>1%</td>
<td>1000</td>
</tr>
</tbody>
</table>

1. Scenario reserves in VM-21 are floored at the CSV

© Oliver Wyman
DRIVING CHARACTERISTIC: MONEYNESS

ITM GMWB contracts will have a higher max withdrawal relative to their account value compared to ATM and OTM GMWB contracts.

Illustrative AV (in ‘000s) for ATM vs deep ITM archetypes under various fund return assumptions

<table>
<thead>
<tr>
<th>Year</th>
<th>Deep ITM (0% fund return)</th>
<th>Deep ITM (5% fund return)</th>
<th>ATM (0% fund return)</th>
<th>ATM (5% fund return)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$250,000</td>
<td>$250,000</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>1</td>
<td>$240,000</td>
<td>$240,000</td>
<td>$900,000</td>
<td>$900,000</td>
</tr>
<tr>
<td>2</td>
<td>$230,000</td>
<td>$230,000</td>
<td>$800,000</td>
<td>$800,000</td>
</tr>
<tr>
<td>3</td>
<td>$220,000</td>
<td>$220,000</td>
<td>$700,000</td>
<td>$700,000</td>
</tr>
<tr>
<td>4</td>
<td>$210,000</td>
<td>$210,000</td>
<td>$600,000</td>
<td>$600,000</td>
</tr>
</tbody>
</table>

1: Deep ITM defined as a benefit base ratio (benefit base / account value) greater than 140% and ATM defined as a benefit base ratio between 100% and 110%. Illustration assumes the benefit base is equal to $1,000,000 in all cases.

Key takeaways:
- A Deep ITM archetype (blue) will deplete AV faster than an ATM archetype (green) for a given scenario.
 - Deeper in-the-money archetypes will result in a higher excess reserve than less in-the-money archetypes, all else equal.
- A 5% increase in the fund return assumption resulted in claims starting 1 and 11 years later for deep ITM and ATM archetypes.
 - Moneyness is a key consideration when evaluating impacts from change in underlying scenario.

© Oliver Wyman
DRIVING CHARACTERISTIC: GMWB BENEFIT STRENGTH

GMWB strength is based on the size of the max withdrawal benefit, driven by withdrawal rates and benefit base features

Illustrative AV (in ‘000s) for weak vs strong guarantees under various fund return assumptions

<table>
<thead>
<tr>
<th></th>
<th>Strong guarantee (0% fund return)</th>
<th>Strong guarantee (-5% fund return)</th>
<th>Weak guarantee (0% fund return)</th>
<th>Weak guarantee (-5% fund return)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting AV</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Max withdrawal benefit</td>
<td>$70,000</td>
<td>$70,000</td>
<td>$45,000</td>
<td>$45,000</td>
</tr>
<tr>
<td>Claim start year</td>
<td>15</td>
<td>11</td>
<td>23</td>
<td>15</td>
</tr>
</tbody>
</table>

Key takeaways
- Strong GMWB guarantees (blue) will result in faster AV depletion than a weaker guarantee (green) for a given scenario
 - Stronger guarantees will result in a larger excess reserve than weak guarantees, all else equal
- A 5% reduction in the fund return assumption resulted in claims starting 4 and 8 years earlier for strong and weak guarantees
 - Benefit strength is a key consideration when evaluating impacts from change in underlying scenario

GOES PRESENTATION 2/7/2024 - PHASE 1 RESULTS
DRIVING CHARACTERISTICS: SCENARIO RESERVES AND CSV FLOOR

Archetype characteristics impact the scenario reserves relative position to the CSV which impacts change in CTE70 in excess of CSV

GMWB benefit strength: Strong vs. Weak
Worst 30% of scenario reserves

Moneyness: ITM vs. ATM
Worst 30% of scenario reserves

Block maturity: Mature vs. New
Worst 30% of scenario reserves
KEY TAKEAWAYS: MODEL OFFICE DEVELOPMENT

<table>
<thead>
<tr>
<th>Category</th>
<th>Takeaways</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Objective, design and archetypes</td>
</tr>
<tr>
<td></td>
<td>• Model office archetypes were developed to evaluate macro level observations and develop additional insights into the wide range of results in the primary metric, change in CTE70 in excess of CSV, used to analyze field test results (pg 20-21)</td>
</tr>
<tr>
<td></td>
<td>• Archetypes analyzed are GMWB/GMDB combo riders with a combination of driving characteristics (moneyness, guarantee strength, block maturity) and hedging approach (pg 21, Appendix B for full listing of archetypes)</td>
</tr>
<tr>
<td>2</td>
<td>CTE70 in excess of CSV floor</td>
</tr>
<tr>
<td></td>
<td>• The relative position of scenario reserves compared to the CSV floor plays a major factor in determining the value of the change in excess reserve (pg 22)</td>
</tr>
<tr>
<td>3</td>
<td>Driving characteristics and archetypes</td>
</tr>
<tr>
<td></td>
<td>• Driving characteristics that make up archetypes have an impact on both relative position of scenario reserves compared to CSV and the sensitivity to changes in underlying scenarios (pg 23-25)</td>
</tr>
<tr>
<td></td>
<td>• Understanding impacts of driving characteristics is a building block for archetype analysis and comparisons to field testing</td>
</tr>
</tbody>
</table>
SECTION 3.2
MODEL OFFICE ANALYSIS
Impact of updating economic scenarios from AAA to Conning 1a across archetypes/industry

Model office testing produced a consistent range of results compared to field testing for both change in excess reserves and change in total reserves:

1. Change in excess reserves has a much wider variance as compared to change in total reserves.
2. Range in change in excess reserve is heavily influenced by interaction with CSV floor.
3. Extreme impacts to change excess reserve are present in both model office testing and field testing.
 - Business with excess reserves near zero fall into this category (e.g., new cohorts, weak guarantees, OTM cohorts).
 - Impact to total change in reserve are much less pronounced.
4. Excess reserves and total reserves increased in almost all cases under the Conning 1a scenarios.
 - Examples of decreases in reserves occurred in both model office testing and field testing.
 - Model office GMDB-only product had one AAA scenario and zero Conning 1a scenarios in excess of CSV.

1: Results capped at 500%, includes GMWB combo and GMDB only results

© Oliver Wyman
ARCHETYPE DEEP DIVE: MONEYNESS

Similar archetypes with different moneyness level are displayed at different positions on the x-axis; level of moneyness combined with other characteristics influence impact.

Change in excess reserve

- Block maturity
 - ▲ New
 - ● Mature

- GMWB benefit strength
 - □ Weak
 - ■ Strong

- Hedge status
 - □ Hedged
 - ■ Unhedged

Moneyness x-axis

Results guide

- Red circle = Mature/Strong/Hedged
- Black circle + Mature
- Red square + Strong
- Black square Hedged

Moneyness information

- Moneyness is defined as benefit base divided by current account value, which is impacted by “historical” fund performance and withdrawals
- A value greater than 100% represents a rider benefit that is larger than account value

Observations

- Model office archetypes with higher moneyness levels have a larger excess reserve and therefore are less sensitive to changes in underlying scenarios

© Oliver Wyman
ARCHETYPE DEEP DIVE: HEDGE STATUS

Hedge status is indicated using shading; solid results are hedged and shaded results are unhedged.

Change in excess reserve

Block maturity
- New
- Mature

GMWB benefit strength
- Weak
- Strong

Hedge status
- Hedged
- Unhedged

Moneyness
- x-axis

Results guide

Mature/Strong/Hedged = Mature + Strong + Hedged

Mature/Strong/Unhedged = Mature + Strong + Unhedged

Hedge status information

- Hedged results are calculated using a weighted average of both a hedged (“best efforts”) and unhedged (“adjusted”) CTE70
- Unhedged archetypes only incorporate the unhedged CTE70 calculation when calculating stochastic reserve

Observations

- Model office archetypes that are unhedged have greater sensitivity to a change in the underlying scenarios than similar hedged archetypes
- Hedging of future capital market risks generally mutes the impact of changes to underlying scenarios
ARCHETYPE DEEP DIVE: BLOCK MATURITY

"New" and “mature” archetypes are indicated by a triangle and circle, respectively

1: Excess reserve ($M): AAA: $0.1 (hedged), $1.3 (unhedged), Conning 1a: $0.2 (hedged), $2.2 (unhedged)

Results guide

Block age information

• “New” archetypes used in model office testing were assumed to be issued more recently, had a younger average age, and smaller number of active withdrawers compared to “mature” archetypes
• “Mature” archetypes used in model office testing were assumed to be issued longer ago, had an older average age, and larger number of active withdrawers compared to “new” archetypes

Observations

• “New” archetypes are less in-the-money compared to similar mature blocks since less contracts are taking withdrawals, leading to smaller excess reserve and more sensitivity to changes in underlying scenarios

1: The unhedged archetype has a greater dollar change in excess reserve but a lower percentage change relative to the hedged archetype because a larger majority of best efforts scenario reserves, which only impact hedge results, are below the CSV floor.

© Oliver Wyman
ARCHETYPE DEEP DIVE: GMWB BENEFIT STRENGTH

"Weak" and "strong" archetypes are indicated by colors blue and red.

Change in excess reserve

Results guide

GMWB benefit strength information

- Weak (strong) archetypes have lower (higher) GMWB rollup and guaranteed withdrawal rates compared to strong (weak) archetypes.

Observations

- Model office archetypes with weak GMWB strength are more likely to have a greater change in excess reserve.
- Weaker rider benefits lead to a smaller excess reserve and more sensitivity to changes in underlying scenarios.
Range of results across archetypes demonstrate model office versatility and are informative when compared to field test impacts

1. Outlier company grouping include companies with reserves in close proximity to CSV and had the largest change in excess reserves
 - Model office archetypes that produce similar effects: newer business, weaker benefits

2. Company groupings are made up of a distribution of key characteristics and rider types, leading to wide range of impacts
 - Model office testing confirms that hedging practices (hedged vs unhedged) lead to variations in results

3. Deep-in-the-money (>140%) or mature “runoff business” have a lower change in excess reserves since most scenario reserves are above the CSV floor. Examples of this in field test results were limited but present

1: Grouping of data points from field test results. Each grouping is made up of 3+ normalized data points. Moneyness level for company groupings is based on the reported GMDB/GMWB combo and is calculated using a simple average.

© Oliver Wyman
CHANGE IN TOTAL RESERVE: ARCHETYPE & FIELD TEST GROUPING

Excess reserves provide a view of potential financial impact to change in underlying scenarios; however, change in total reserves highlights the impact to the underlying scenario reserves.

1. “Outliers” company grouping for change in excess reserve are no longer outliers, indicating a similar pattern of scenario reserves between scenario sets.

2. The range of change in total reserve in both model office testing and field testing is much tighter compared to change in excess reserve.
 - Limited industry data was available to compare to deep ITM business.

1: Grouping of data points from field test results. Each grouping is made up of 3+ normalized data points. Moneyness level for company groupings is based on the reported GMDB/GMWB combo and is calculated using a simple average.
EXPLANATION OF RESULTS: OUTLIERS

The extreme changes in reserve levels are a result of CSV flooring and more likely to be observed in new or OTM blocks. Outliers were observed in both model office testing and field testing.

Model office results – New/Weak/OTM archetype

Very few scenarios in excess of CSV

Model office results – New/Weak/OTM archetype

<table>
<thead>
<tr>
<th>Component</th>
<th>AAA</th>
<th>Conning 1a</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floored CTE70 (best efforts)</td>
<td>unhedged</td>
<td>unhedged</td>
<td>NA</td>
</tr>
<tr>
<td>Floored CTE70 (adjusted)</td>
<td>94,021</td>
<td>94,116</td>
<td>0.1%</td>
</tr>
<tr>
<td>Excess reserve</td>
<td>21</td>
<td>116</td>
<td>449%</td>
</tr>
<tr>
<td>Total reserve</td>
<td>94,021</td>
<td>94,116</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Change in total reserve is minimal in these cases

Model office and field-testing results

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Source</th>
<th>Change in excess reserve</th>
<th>Total change in reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>New/Weak/OTM/Unhedged archetype</td>
<td>Model office</td>
<td>449%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Mature/Weak/ATM/Hedged archetype</td>
<td>Model office</td>
<td>631%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Field test grouping1</td>
<td>Field testing</td>
<td>1025%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

1: Grouping of data points from field test results. Each grouping is made up of 3+ normalized data points
© Oliver Wyman
EXPLANATION OF RESULTS: HEDGED VS UNHEDGED

Hedging programs reduce scenario sensitivity. This trend was observed in both model office testing and field testing.

Model office and field-testing results

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Source</th>
<th>Change in excess reserve</th>
<th>Total change in reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature/Strong/ATM/Unhedged archetype</td>
<td>Model office</td>
<td>78.7%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Field test grouping(^1) – unheded</td>
<td>Field testing</td>
<td>69.8%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Mature/Strong/ATM/Hedged archetype</td>
<td>Model office</td>
<td>14.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Field test grouping(^1) – hedged (implicit)</td>
<td>Field testing</td>
<td>23.8%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

1: Grouping of data points from field test results. Each grouping is made up of 3+ normalized data points

© Oliver Wyman
KEY TAKEAWAYS: MODEL OFFICE ANALYSIS

<table>
<thead>
<tr>
<th>Category</th>
<th>Takeaways</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Model office approach</td>
<td>• Model office approach produced a range of results across archetypes that align well with initial field test results, making it an appropriate tool to supplement unaggregated GOES field testing (pg 28)</td>
</tr>
</tbody>
</table>
| 2 Impact of archetypes | • Archetype analysis demonstrates how liability characteristics and hedging practices can drive the relative impact to change in excess reserves (*pg 29-32, 36*)
 | • Characteristics that drive excess reserves to lower levels: Newer business, weaker benefits, ATM/OTM (*pg 29-33*) |
| 3 Excess vs total reserve | • In addition to change in excess reserves over CSV, additional metrics and results should be considered when evaluating field test results (e.g., total change in reserve, change in scenario reserves) (*pg 28, 34*) |
 | • Change in excess reserves highlights the financial impacts to the industry while change in total reserves highlights the impact to the underlying scenario reserves |

© Oliver Wyman
OLIVER WYMAN TEAM
OLIVER WYMAN TEAM

Dylan Strother, FSA
Senior Principal
Engagement manager
dylan.strother@oliverwyman.com

Yuan Tao, FSA
Principal
VM-21 SME
yuan.tao@oliverwyman.com

Simon Gervais, FSA
Senior Manager
Modeling and analysis lead
simon.gervais@oliverwyman.com

Nick Farber, ASA
Consultant
Modeling and analysis support
nick.farber@oliverwyman.com
QUALIFICATIONS, ASSUMPTIONS, AND LIMITING CONDITIONS

This report is for the exclusive use of the Oliver Wyman client named herein. This report is not intended for general circulation or publication, nor is it to be reproduced, quoted, or distributed for any purpose without the prior written permission of Oliver Wyman. There are no third-party beneficiaries with respect to this report, and Oliver Wyman does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified, unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make no representation as to the accuracy or completeness of such information. The findings contained in this report may contain predictions based on current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. Oliver Wyman accepts no responsibility for actual results or future events.

The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise this report to reflect changes, events, or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties. In addition, this report does not represent legal, medical, accounting, safety, or other specialized advice. For any such advice, Oliver Wyman recommends seeking and obtaining advice from a qualified professional.