RMBS Through-the-Cycle Macroeconomic Scenarios

April 9, 2017

Structured Securities Group

BACKGROUND

Rationale

- Interested parties requested that the NAIC explore the use of economic scenarios for the year-end modeling process which are consistent year to year and can be modelled internally.
 - This is an issue that has been consistently raised since the NAIC adopted financial modeling methodology.
- The TF asked SSG to research and propose such set of scenarios.

Use of Economic Scenarios

In the context of the Year-end project, the macro-economic scenarios are the initial step and are used by the mortgage credit model to calculate performance metrics.

Current Approach

- Since 2009, the NAIC has followed the same approach for determining macro-economic scenarios.
 - Use a base case scenario, from a third party, which constitutes their best estimate of future events given current conditions.
 - 2. Generate stress "paths" around the base.
- This approach generates inherent pro-cyclicality i.e. the base prediction is negative in bad times and positive in good times.

11% increase over 3yrs.

Study Criteria

- The scenarios produced by the SSG must be able to meet the following criteria:
 - 1. Be based on historical and publically available data: e.g Case-Shiller for RMBS.
 - 2. The model must be able to generate several forecast "paths" which can statistically represent various percentiles (e.g. 5th, 50th, 75th and 95th).
 - 3. Qualitatively, we would expect that the extreme scenarios approximately mimic historical extremes (e.g. the RMBS Most Conservative scenarios should approximate the recent financial crisis).
 - 4. Be "memoryless" (i.e. possess the Markov property). This is the key criteria that ensures consistency and a-cyclicality.
- ➤ The resulting paths / scenarios would be converted into periodic percentage changes to be applied annually to then current value (e.g. HPI).

MODEL DEVELOPMENT LOG

Introduction

- The process of developing the scenario flows through four stages:
- ➤ Data Analysis
 - Ensure data is stationary; apply transforms
- Model Fitting
 - Select and parametrize an ARIMA model
 - Analyze residuals
- Simulation Model
 - Simulate the selected model to produce a number paths.
- ➤ Scenario generation
 - > Select appropriate percentiles for macro-economic scenarios

Data: Source

- ➤ Used the U.S. Case-Shiller
 Home Price Index: SingleFamily Aggregate Index from
 Q1 1983 to Q4 2012. The index
 is already Seasonally Adjusted.
 - Time frame matches one used by the AAA for Bond Factor Research
 - Used Quarterly data to reduce noise
- Since the time series is proprietary, we would not be able to redistribute to interested parties.

Data: Log Transform

- Most financial time-series show increasing variance with time.
- However, time-series models require that the time series be at least "weakly stationary".
- ➤ One popular way to stabilize variance is a log transform.
 - In our case, the new data set is called 1q.

Data: Analysis of Stationarity

- To further test unit roots and to determine if the data is stationarity, we used the Augmented Dickey-Fuller test ("ADF") for 1q.
- The test <u>rejects</u> the null hypothesis that **1q** has unit roots / is "explosive".

R Console:

> adf.test(lq)

Augmented Dickey-Fuller Test

data: lq
Dickey-Fuller = -3.9467, Lag order
= 4, p-value = 0.01422
alternative hypothesis: stationary

Model Fitting: ARIMA models

- ARIMA (<u>AutoRegressive</u>
 <u>Integrated Moving Average</u>) are the workforce of time-series modeling.
 - They are capable of linearly combining several autoregressive and moving average parameters.
- For analytics, Revolution R version 7.5 (running R 3.2.2) and Prof Hyndman forecast package version 7.3 were utilized.

Time

12

Model Fitting: auto.arima

- We used the forecast package's auto.arima function to select an ARIMA (2,0,0) model.
- ➤ auto.arima selects the model by maximizing the log likelihood while minimizing complexity based measures (e.g. AIC, AICc, BIC).
 - Models which are highly complex tend to overfit the data and not be useful for prediction.

R Console:

>auto.arima(lq, test="adf")

Series: lq

ARIMA(2,0,0) with non-zero mean

Coefficients:

	ar1	ar2	intercept
	1.9316	-0.9323	4.9658
s.e.	0.0536	0.0542	2.5143

sigma^2 estimated as 4.625e-05:
log likelihood=429.86

AIC=-851.71 AICc=-851.36 BIC=-840.56

1 /

Model Fitting: Residual Analysis:

- Lastly, we examine the residuals from the model.
 - Residuals are the difference between the x_{actual} and x_{fitted}
- ➤ In our case, the residuals appear to be heavy tailed reflecting the increase in volatility during the crisis.
- ➤ Practically, this implies that for simulations we cannot use a normally distributed error term. Instead we choose to bootstrap the residuals.

Simulation: Motivation

- ➤ We have a number of constraints in leveraging the model results for predictive value.
- ➤ Some are self-imposed:
 - > Through-the-cycle i.e. independence of forecast from actual values before t₀.
 - > Ability to select specific "paths" from the simulation.
- ➤ Others result from an analysis of model residuals would like to maintain the non-normality of the error structure.
- ➤ We have chosen to implement a model-based moving block bootstrap, based on Lahiri [1999 and 2004].
 - "Model-based": we use the actual residuals from the fitted model
 - "Bootstrap": we resample the residuals with replacement
 - "Moving block": instead of sampling a single residual, we sample block which retain any dependence structure in the residuals.

Simulation: Algorithm

Algorithm naic.arima.3

Given model, npaths, sim length, and block length

For each path:

Select random starting point in the historical data (this is the TTC element)

Create a path specific *innovation vector* by randomly (with replacement) stacking blocks (of *block length*) of residuals up to *sim length* (this is the moving block approach)

Simulate a path from the starting point using the innovation vector above

Normalize data by dividing the resulting values by the value at the starting point

Repeat *npaths* times

Scenario Generation

- The R code for the naic.arima. 3 function, along with the detailed model development log is available to interested parties.
- To create the required distribution we ran 100,000 paths, 80 quarters into future, using a block of 4 residuals.
- The data were then re-transformed into the original scale by the application exp() function and normalized by dividing the initial value.
- > Percentiles were chosen by using by using the quantile function.
 - ➤ This selects the X percentile at each time period independent of a particular path. We believe that this best fits the approach taken by the Academy.
 - ➤ However, we are also open to other (e.g. kernel based) methods of calculating the percentile.
- > These scenarios would then be used for all future modeling.

Scenario Generation: Results

> The Chart below shows the probability cone for the simulation.

Percentile Levels

Potential Scenarios

- ➤ Based on the slightly conservative skew employed for YE process since 2011, we recommend using the scenarios below.
- ➤ We believe these scenarios meet our qualitative criteria of capturing the effect of housing bubble of the 2000s.

Scenario	Percentile Chosen	3 yr.	5 yr.
Optimistic	75 th	16%	26%
Base	50 th	7%	10%
Conservative	25 th	-3%	-7%
Most Cons	5 th	-19%	-29%

5 year scenario comparison

A comparison of the generated scenarios versus those used for the past two years.

Scenario	5 yr.	2016 5 yr.	2015 5 yr.
Optimistic	26%	37%	43%
Base	10%	13%	18%
Conservative	-7%	-11%	-8%
Most Cons	-29%	-26%	-23%

NEXT STEPS

Next Steps

- ➤ We ask that the Task Force expose the proposed model for comments.
- ➤ The comments should be technical we have taken extra steps to be transparent and expect detailed, technical comments in return.
- ➤ Once the comments are received, the TF can decide to proceed with the CMBS portion of the project.

APPENDIX 1: ARIMA MODELS

Side Bar: ARIMA models 1

- \triangleright ARIMA stands for $\underline{\mathbf{A}}$ uto $\underline{\mathbf{R}}$ egressive $\underline{\mathbf{I}}$ ntegrated $\underline{\mathbf{M}}$ oving $\underline{\mathbf{A}}$ verage.
- $ightharpoonup \underline{A}$ uto \underline{R} egressive: Next observation is a "regression on itself", so ARIMA (1,0,0) is: $Y_t = \beta Y_{t-1} + \varepsilon_t$ where ε is a random

Moving Average: Next observation is a function of the previous random factors, so ARIMA (0,0,1) is: $Y_t = \varphi \varepsilon_{t-1} + \varepsilon_t$ where ε is a random factor.

factor.

Side Bar: ARIMA models 2

Lastly, "Integrated" relates to the differences between Y_t and Y_{t-1} . For example, a random walk can be written as an ARIMA (0,1,0):

 $Y_t - Y_{t-1} = \varepsilon_t$ where ε is a random factor.

ARIMA combines all three elements in one set of modeling tools.

REFERENCES

References

- Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
- ➤ Hyndman, R. J., & Khandakar, Y. (2007). *Automatic time series for forecasting: the forecast package for R* (No. 6/07). Monash University, Department of Econometrics and Business Statistics.
- Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. *Annals of Statistics*, 386-404.
- Lahiri, S. N. (2013). Resampling methods for dependent data. Springer Science & Business Media
- ➤ Pascual, L., Romo, J., & Ruiz, E. (2004). Bootstrap predictive inference for ARIMA processes. *Journal of Time Series Analysis*, *25*(4), 449-465.
- ➤ Ruiz, E., & Pascual, L. (2002). Bootstrapping financial time series. *Journal of Economic Surveys*, *16*(3), 271-300.

