Emerging Risks: Climate Change

- Emerging Risks: Climate change
 - CO₂ and IPCC Scenarios
 - Warming
 - Sea-level Rise
 - Tropical Cyclone activity

CO₂ increase 1958-2008

2014 over 400 ppm

Atmosphere > heat Ocean > Acid > Heat

IPCC Scenarios

2014 is following a 3-5C global mean increase

Anomaly (°C)

Sea Level Rise

Thermal expansion of warmer oceans (HC)

Glacier Melt (MC) Ice sheet calving

Less water storage on land

Helheim Glacier, Greenland (NASA)

Ocean Temperatures and Sea Level

SST for 2013 among 10 warmest on record.

North Pacific record warm for 2013.

Mean sea level rise 2013, on pace with 3.2 ± 0.4 mm per year past two decades

High confidence in projections of thermal expansion

Good observational estimates

Consistency of historical simulations with observations

Better understanding of the Earth energy budget

Fig 13.4a, change relative to 1986-2005

Very likely that the 21st-century mean rate of GMSLR will exceed that of 1971-2010 under all RCPs.

From J. Gregory, IPCC AR5 WG1, 2013

Regional sea level rise by the end of the 21st century

It is *very likely* that sea level will rise in more than about 95% of the ocean area.

About 70% of the coastlines worldwide are projected to experience sea level change within 20% of the global mean sea level change.

From J. Gregory, IPCC AR5 WG1, 2013

Miami 3-12 in increase by 2034

Venetian Causeway: Eric Blake, NHC (B. McNoldy RSMAS blog) http://www.rsmas.miami.edu/blog/2014/10/03/sea-level-rise-in-miami/

Global Tropical Cyclones in a warmer climate

Lower frequencies

Slightly higher intensities

Some indication of larger storms, more precipitation

Lots of variability from one ocean to the next

Global models can predict TC frequencies given SSTs

FSU Global Model LaRow, 2013 Monthly Weather Review

Model Predicted Global Annual Frequency

Clivar Working Group

Distribution of Max Intensity in models and observations for with present day CO2 and climatological SSTs

Clivar Working Group

Response of global TC frequency to 2C warmer, Double CO₂

Clivar Working Group

What about Atlantic Hurricanes?

Atlantic Multidecadal Oscillation (40-70 year oscillation in SSTs)

The combination of warmer Atlantic waters, an enhanced West African monsoon system, and suppressed convection over the Amazon Basin has been in place during August-October since 1995. Similar conditions were also present during the active Atlantic hurricane period 1950-1970. Opposite conditions were associated with the below-normal hurricane era 1971-1994.

Atlantic Multidecadal Oscillation (AMO) (Observations)

Negative AMO Phase Impacts

- 2. 15 major hurricanes (surface winds > 111mph)
- 3. Decrease US landfalling hurricanes

Positive AMO Phase Impacts

- 1. 1953-1970 & 1995-2000 25 years of AMO warm phase
- 2. 33 major hurricanes (surface winds > 111mph)
- 3. Increase US landfalling hurricanes

FSU Model TC Counts

LaRow, et al., 2014 Journal of Climate

FSU Model and Future NTC Projections

Even under a cold AMO, 21st century TCs have counts similar to the current active period of 1995-2012, under warm AMO, counts are even higher and intensities ~5% stinger

Model Projected AMO signal to 21st Century

- Compared to 1982-2009 mean
 - Warm phase: More storms but further offshore
 - Cold Phase: Fewer storms
 but more landfalls
 - 5-7% increase in Winds
 - 13% increase in Precip

LaRow, et al., 2014 Journal of Climate

Global TC counts under the historical (1950-2005) and RCP 8.5 scenario using a downscaling method on results of six climate models Emanuel 2013 PNAS

Emanuel's Downscaling suggests increased TC activity 2006-2100

Conclusions

Sea Level Rise

- Models reproduce thermal expansion well
- Glaciers and ice shelves a challenge
- Most certain projection of climate change
- Tropical Cyclones and Climate change
 - Models can reproduce history well
 - Still differences on TCs in a warmer climate
 - Some indication of more activity in Atlantic

Thanks!

Mark.Powell@hwind.co hwind.co

