LONGEVITY RISK TASK FORCE UPDATE

TRICIA MATSON, MAAA, FSA CHAIRPERSON, LONGEVITY RISK TASK FORCE

PAUL NAVRATIL, MAAA, FSA MEMBER, LONGEVITY RISK TASK FORCE

SEPTEMBER 22, 2017

Presentation to the NAIC's Longevity Risk Subgroup

© 2017 American Academy of Actuaries. All rights reserved. May not be reproduced without express permission.

- Current Approach
- Proposed Methodology
- Field Study
- Next Steps

Objective. Independent. Effective.™ © 2017 American Academy of Actuaries. All rights reserved. May not be reproduced without express permission.

Attachment 1

Current Approach

- **Focused on a longevity risk charge for payout annuities (including deferred payout)**
- Statutory reserves are generally intended to be at the 85th percentile level
 - Formulaic plus any additional reserves from asset adequacy testing (AAT)
- **RBC** factors generally cover risks in excess of reserves up to a 95th percentile event
 - Capital requirements are established under the assumption that statutory reserves are adequate;
 RBC is not a balance sheet item and is not intended to make up for shortfalls in reserves. Stresses up to the 85th percentile are assumed to be covered in reserves
 - The longevity risk stress event will include both basis risk (risk that actual company mortality varies from the table) and trend risk (risk that actual mortality improvement varies from assumed)
 - Based on its nature, trend risk stress event looks at a relatively long time horizon
- RBC longevity risk charge will be based on difference between "current" statutory reserve and statutory reserve calculated under a longevity stress, converted to a factor

Risks To Be Included

- LRTF previously determined that focus should be on trend risk only (mortality improvement), and used historical data to develop a stress event for mortality improvement based on the 95th less the 85th percentile result (0.25% up to age 85; 0.50% age 85-104)
- Current reserve basis (2012 IAM) appears to only include a margin for basis risk
- Therefore, LRTF determined that charge should consider both basis risk and trend risk

Components of Basis Risk

Valuation Table vs. Company Mortality

- Prescribed statutory valuation mortality may not be conservative enough for all business
- AAT Testing already covers this risk

Company Mortality Experience Assumption vs. True Company Mortality Basis

- I. Credibility Risk—difference between the true underlying mortality basis and company experience due to the limited amount of experience data. Size of this risk declines as the quantity of experience increases
- **II. Volatility of True Mortality**—true underlying mortality rates have volatility and change from year to year even with fully credible data
- III. Mortality Trend Adjustment—mortality experience over a multi-year period must be translated to a base table year using a mortality improvement assumption. Basis risk will result to the extent this assumed improvement differs from actual underlying improvement.

I. Credibility Risk

- **Full credibility is often defined as 95% confidence that an assumption is within 5% of the true value**
- Some error margin always exists even with long experience from a fully credible block of business
- **Figures below use Longley-Cook credibility formula to estimate this error margin**
- Adjusted for credibility by amount of insurance in force using data underlying the 2012 IAM table development

	One-sided confidence interval for μ								
# of Deaths	<u>85%</u>	<u>95%</u>	<u>99%</u>	<u>95th - 85th</u>					
250	14.0%	22.2%	31.4%	8.2%					
500	9.9%	15.7%	22.2%	5.8%					
1,082	6.7%	10.7%	15.1%	4.0%					
3,000	4.0%	6.4%	9.1%	2.4%					
10,000	2.2%	3.5%	5.0%	1.3%					
100,000	0.7%	1.1%	1.6%	0.4%					
200,000	0.5%	0.8%	1.1%	0.3%					

II. Volatility of True Mortality

- This results from year-to-year volatility in true population mortality rates in the experience study period
- Using data and analysis from the LRTF's prior work on trend risk, the annual volatility of population mortality in the U.S. is 2.9% at 1 standard deviation
- This result is scaled to multi-year experience periods using the assumption that each years' volatility is independent
- Longer experience periods will reduce this risk component as the impact of volatility in any single year is diminished

Volatility of Underlying Population Mortalitiy Rate μ								
Annual volatility of mortality rate (improvement rate) from trend risk work:								2.9%
# of Exp Yrs	<u>85%</u>	<u>95%</u>	<u>99%</u>		<u>95th - 85th</u>			
1	3.0%	4.8%	6.7%		1.8%			
3	1.7%	2.8%	3.9%		1.0%			
5	1.3%	2.1%	3.0%		0.8%			
10	1.0%	1.5%	2.1%		0.6%			

7

III. Trend Adjustment

- Risk results from differences between actual and assumed mortality improvement during the experience period that is used to adjust mortality experience to the base table effective date
- Quantification uses mortality trend stress work previously completed by group (aggregate M/F results across all ages based on the normal model at 85th and 95th percentile relative to mean improvement)
- Trend stress is applied for ½ of the experience period—trending from the mid-point of the experience period to the end point
- Longer experience periods will increase this component as the possibility for error in trending older experience to the valuation date increases

Mortality Trend A							
Trend Stress:	0.38%	0.60%	(from Trend Stress work, normal model)				
# of Exp Yrs	<u>85%</u>	<u>95%</u>		<u>95th - 85th</u>			
1	0.2%	0.3%		0.1%			
3	0.6%	0.9%		0.3%			
5	1.0%	1.5%		0.6%			
10	1.9%	3.0%		1.1%			

Aggregate Basis Risk

- The three components are independent, so aggregate basis risk measured as (A2 + B2 + C2) ½
- Overall risk is not that sensitive to the length of experience period given the trade-off between Annual Volatility and Trend Adjustment as the experience period lengthens.
- Credibility adjustment declines with experience, but aggregate basis risk quickly becomes dominated by components B and C for large blocks of business.
- Aggregate basis risk is independent of mortality trend risk

# of Exp Yrs:	3	3	3	5	5	5	10	10	10
# of Deaths	500	3,000	100,000	500	3,000	100,000	500	3,000	100,000
I. Credibility	5.8%	2.4%	0.4%	5.8%	2.4%	0.4%	5.8%	2.4%	0.4%
II. Volatility	1.0%	1.0%	1.0%	0.8%	0.8%	0.8%	0.6%	0.6%	0.6%
III. Trend Adjustment	0.3%	0.3%	0.3%	0.6%	0.6%	0.6%	1.1%	1.1%	1.1%
Total Basis	5.9%	2.6%	1.1%	5.9%	2.6%	1.0%	5.9%	2.7%	1.3%

Result is a qx aggregate basis risk stress event ranging from approximately 1% to 6% depending on block size

Field Study

- While we have performed simple testing in Excel, the LRTF suggests that the NAIC Longevity Risk Subgroup (LRSG) conduct a study to evaluate results of applying the agreed upon approach to actual company blocks of business
- LRTF has developed instructions and a template to be completed to enable LRSG to conduct a field study on individual and group annuities
- Request Dec. 31, 2016 statutory CARVM reserve amounts calculated on the 3 assumption bases, under a range of valuation interest rate, issue age, duration since issue, and gender combinations

Run A – 2016 CARVM Valuation Basis (assumed to be 85th percentile)

- 2012 IAM Table (1994 GAR for Group business)
- Projection Scale G2 (Projection Scale AA for Group business)

Run B – 95th Percentile Stress – basis risk

- 2012 IAM Table (1994 GAR for Group business), all rates adjusted for our defined basis risk stress event (99%, 97%, or 94%, depending on block size)
- Projection Scale G2 (Projection Scale AA for Group business)
- Run C 95th Percentile Stress trend risk

11

- 2012 IAM Table (1994 GAR for Group business)
- Projection Scale G2 (Projection Scale AA for Group business), all improvement factors adjusted for our defined trend stress event (0.25%/0.50% stress)

Capital = [(Run B - Run A)² + (Run C – Run A)²]^{1/2}

American Academy of Actuaries

Next Steps

Questions for LRSG

- Does approach for basis risk make sense?
- Should the charge vary by block size?
- Conduct field study and evaluate results
- Determine approach to correlation with other risks (most significantly, C2)
- Continue to evaluate approach for a potential RBC charge for lifetime income benefits

Appendix

Prior Update provided to Life Risk Based Capital Committee (NAIC Summer Meeting)

Determining Trend Risk Tail Event

- LRTF analyzed historical population data over the period 1900-2013 using Social Security population data
- Calculated 1-, 5-, 10-, 20-, and 40-year rates of improvement by age bucket and gender
- Fit historical improvement data to a normal distribution to evaluate use of a normal model
- Developed a 95th percentile improvement event, focused on the 20year historical period (which is conservative vs. current RBC's typical 5-10 year horizon)
- Evaluated difference between 95th percentile and 85th percentile for use in RBC

Below is the distribution of annual and 20-year mortality improvement data from 1940-2013 used to develop the shock event

Objective. Independent. Effective.™ © 2017 American Academy of Actuaries. All rights reserved. May not be reproduced without express permission.

*Annual is improvement over historical one-year periods

15

*20 year is improvement over historical 20-year periods, converted to an annual rate

For more information

Attachment 1

Tricia Matson, MAAA, FSA Chairperson, Longevity Risk Task Force (LRTF) tricia.matson@riskreg.com

Ian Trepanier Life Policy Analyst American Academy of Actuaries trepanier@actuary.org

