

Actuarial
Modernization:
Expedited Approaches
for Reserving, Pricing,
and Financial
Reporting

Actuarial analysis in the digital age NAIC Predictive Analytics Book Club

December 4, 2018

Agenda

Topic
Reserve Modernization – Refresh
Industry Overview – Current Pilots and Uses
Applications of Reserve Modernization
Case Studies
Results Interpretation & Visualization

The components are interconnected and build on each other

	Robotic process automation	Cognitive Analysis	Results Presentation	Enterprise Response
Description	 Automation of repetitive tasks Use of "bots" – a kind of super macro that operates across systems 	 Machine learning techniques applied to claims valuation Results allocated at a granular claim level 	 New techniques to tailor and present results Enhanced ad hoc analytics 	 Operating model to translate new insights into action Mobilization across core departments – pricing, underwriting, claims, finance
Approach	 Review existing process flows, identify automation points Develop and test 'bot' macros 	 Leverages new statistical software Uses structured and unstructured data, including individual claim characteristics 	 Applies new visualization tools to the granular data Combination of standard, tailored, and ad hoc reports 	 Identifies processes, structure, roles, and governance to communicate, interpret, and respond to insights/trends
Benefits	 Shorter cycle times and faster close process Less resources needed deploy to other priorities or eliminate to save costs 	 Faster identification of trends Results at granular claim level allows for deeper root cause analysis 	 Better, user-friendly reports with more granular insights Stronger engagement by business-side consumer of the information 	 Common view of issues Coordinated cross-unit action Effective, timely response to issues

Agenda

Topic	
Reserve Modernization – Refresh	
Industry Overview – Current Pilots and Uses	
Applications of Reserve Modernization	
Case Studies	
Results Interpretation & Visualization	

State of the Industry

Advanced Cognitive Reserving

Pilot of Advanced Cognitive Applications

Applied to Traditional Methods

Used Outside of Actuarial Department

- Market Leading One global P&C insurer is currently rolling out cognitive reserving across multiple Segments
 - By perhaps 1-2 years ahead of other leading adopters
- Several more sophisticated Companies are piloting claims level reserving approaches
 - Often technical exercises on troubled segments
- Some have taken the approach that these tools should be used to enhance traditional methods
- Many companies are using Cognitive approaches outside the reserving function

Agenda

Topic	
Reserve Modernization – Refresh	
Industry Overview – Current Pilots and Uses	
Applications of Reserve Modernization	
Case Studies	
Results Interpretation & Visualization	

A Range of Applications are being Considered

Traditional Methods

Pricing

Financial Reporting

Distribution Channel Evaluation

Target Markets

Claims Handling Enhancement

IFRS 17

Automation of Traditional Methods

Squaring the triangle

Predict the unpaid losses to calculate ultimate losses and compare to actual ultimates

Pricing

Application of Cognitive Analytics allows for more granular results that can yield significant results in pricing as well as reserving

- Granular evaluation of loss experience can be applied across many company functions
- The granularity of calculations will help close the feedback loop between core actuarial functions
- Numerous applications in areas that are now siloed such as:
 - Relativities
 - Risk Classification
 - Establishment of tiers
 - Expense loading and allocation

Financial and Profitability Reporting

The results of Cognitive tools have numerous applications to financial reporting and planning as well

- Cognitive methods provide detailed future cash flows
- Drillable profitability data by profit center and book of business
- More accurate capital allocation
- Partial automation of financial reporting packets

Underwriter & Broker Evaluation

Examine the performance of distribution channels in an intuitive and systematic manner

- Evaluate performance on a loss cost basis of longer periods of time
- Consider variation of results
- Layer in other key evaluation metrics such as retention and production

Target Market Evaluation

Evaluate profitability along numerous metrics to identify areas to grow and segments to avoid

- Target segments
- Target regions
- Target business units
- Target distribution channels

Claims Function Enhancement

Cognitive methods have the potential to help insurers with many aspects of claims handling

Commentary

- Setting more accurate case reserves
- Reserve strength & claim closure rates
- Claims triage
- Automation potential with RPA
- Reinsurance recoveries

Number of Open Claims *

Number of Closed Claims *

IFRS 17

Claim level IBNR and projected cash flows provide a solution to related issues under IFRS 17:

- Cash flows at a granular level may be required for discounting and risk margin calculations
- Onerous contract testing can be required in various segments
- For segments under the General Measurement Model, establishment of the CSM can require evaluation of various segmentations
- The flexibility of experience at a granular level can provide critical input into IFRS calculations

Agenda

Topic	
Reserve Modernization – Refresh	
Industry Overview – Current Pilots and Uses	
Applications of Reserve Modernization	
Case Studies	

Results Interpretation & Visualization

Case studies

Use Case 1 – U.S. Life Operation of Global Multi-Line Insurer – Cognitive Reserving Solution using a Random Forest Model to predict state changes impacting universal life cash flows

Use Case 2 – Multiple Cognitive Reserving Solutions leveraging Gradient Boosting and Random Forest Models to proactively identify deterioration of problematic business segments:

- Client A U.S. Operation of Global P&C Insurer Commercial Auto Reserving Model
- Client B E&S Operation of a Top 5 US Insurer Binding Casualty Policy Profitability Model

Prediction of state change

- Existing method for predicting state change was performing poorly
 - Cognitive analysis used to predict the probability of state changes
 - Response variable is probability of state change
- Possible policyholder states:
 - Stable
 - Near lapse
 - Lapsed with payment plan
 - No payment expected

Case 1

Model build considerations

Parameter selection based on one way analysis

Hyper parameter selection based on a grid search

Data storage – simplified through K mean clustering analysis

Case 1

Model implementation

Results of random forest model fed into markov chain matrix

 Markov chain monte carlo method applied recursively to obtain 80 years of cash flows

 Results summarized in 10 buckets determined by K means analysis

Case 2 – Client A Model Overview

Generalized machine learning framework for cognitive

reserving

Claim coverage level

Portfolio level

15

Case 2 - Client A IBNER Approach

Calculation is performed at low level of granularity (e.g. Claim) – leveraging granular data assets

	<	Actual Experience	ce >		Future Predict	ed Experience	──
Period	1	2	3	4(F)	5(F)	6(F)	7(F)
Actual Incremental Paid Losses	2500	0	3000	NA	NA	NA	NA
Known Claims Model Estimate	NA	NA	NA	3000	4000	7000	7500
Open Claim Propensity Estimate	NA	NA	NA	25%	21%	18%	15%
Conditional Probability of Oper Estimate ¹	NA	NA	NA	100%	84%	72%	60%
Estimated IBNER ²	NA	NA	NA	3000	3360	5040	4500

Example – not derived from any company sources

¹Conditional probability of claim open at the beginning of each future period given that the claim is open at the beginning of period 4. (e.g. Conditional Probability of Open for Period 5 = 0.21 / 0.25 = 0.84)

²Estimated IBNER = Known Claims Model Estimate * Conditional Probability of Open

IBNER

17

Case 2 - Client A

Using Generalized Approach for <u>Pure IBNR</u> Estimation

Calculation is performed at portfolio level (can be allocated to policy)

Pure IBNR

	Actual Experience			Future Predicted Experience			\longrightarrow
Period	1	2	3	4(F)	5(F)	6(F)	7(F)
Actual Newly Reported Claims	1000	300	100	NA	NA	NA	NA
Future Reported Claims Model Estimate	NA	NA	NA	30	20	12	5
Severity on Future Reported Claims Model Estimate	NA	NA	NA	35,000	38,000	42,000	47,000
Estimated Pure IBNR	NA	NA	NA	1.05M	760k	504k	235k

Total IBNR = IBNER + Pure IBNR

Example – not derived from any company sources

Case 2 - Client B

Detailed Plan for Profitability Analysis

As currently envisioned, we will create a Known Claims Model to estimate IBNER at a granular level and conduct an analysis of Frequency and Severity to estimate pure IBNR:

Test and Validation Approaches

Approach #2:
Based on
Expected
Distribution of
Closed Claims

Validation approach used for selections of

- Model methods
- Hyper parameters
- Predictive variables

Test approach used to evaluate the model performance

Do the selected methods with hyper parameters and variables generalize well in different time periods?

Two approaches test

- Actual vs predicted claim emergence / ultimate at close
 - Using data test set
- Model predicted IBNER / Pure IBNR vs. traditional methods indications

Case 2

Granular Results = Flexible Insights

Levels with largest paid deviations from expected Commercial auto liability

Illustrative

Variable	Level	Actual – expected paid losses	Primary driver	Secondary driver
State	Texas	\$32,000,000	Closed claim count (Higher than expected)	Paid severity (Higher than expected)
Segment	Construction large account	\$20,000,000	Paid severity (Higher than expected)	Closed claim count (Higher than expected)
Vehicle weight	Heavy weight truck	- \$19,000,000	Paid severity (Lower than expected)	N/a
Unbundled indicator	TPA Handled	- \$55,000,000	Newly reported claim count (lower than expected)	Paid severity (Lower than expected)

Is TPA data properly in our systems?

This Cognitive Actual vs. Expected tool will also provide fast insights about trends which benefit risk selection, pricing, claim handling, etc.

Case 2 – Client B

Tiering – Illustrative Example of Segmentation

Profitable Classes

	"A" Classes	
		Ultimate
Accident	Earned	Loss
Year	Premium	Ratio
2011	37,006,340	34.3%
2012	36,407,096	32.0%
2013	39,034,261	39.2%
2014	40,261,749	42.3%
2015	41,718,413	26.9%
2016	42,087,124	22.8%
2017	42,267,347	27.0%
Total	278,782,331	30.7%
2011-13	112,447,698	34.3%
2014-17	166,334,633	28.2%

Unprofitable Classes

	"C" Classes	
		Ultimate
Accident	Earned	Loss
Year	Premium	Ratio
2011	18,434,129	100.9%
2012	19,897,639	109.9%
2013	22,863,494	103.7%
2014	28,277,897	130.1%
2015	31,133,767	138.1%
2016	32,026,072	127.2%
2017	33,078,866	154.9%
Total	185,711,865	127.1%
2011-13	61,195,262	105.1%
2014-17	124,516,603	137.9%

Remaining Classes

	"B" Classes			
		Ultimate		
Accident	Earned	Loss		
Year	Premium	Ratio		
2011	217,759,676	48.9%		
2012	226,605,359	48.0%		
2013	246,685,981	48.3%		
2014	276,321,007	56.4%		
2015	293,284,212	54.2%		
2016	302,186,749	56.9%		
2017	308,008,582	58.6%		
Total	1,870,851,567	53.6%		
2011-13	691,051,017	48.4%		
2014-17	1,179,800,550	56.6%		

New York Contractors

NY Contractors				
	Ultimate			
Accident	Earned	Loss		
Year	Premium	Ratio		
2011	13,745,120	105.2%		
2012	14,482,344	117.6%		
2013	16,956,029	106.3%		
2014	22,427,473	141.6%		
2015	29,477,192	108.9%		
2016	19,630,336	74.6%		
2017	9,162,464	25.6%		
Total	125,880,958	103.5%		
2011-13	45,183,493	109.6%		
2014-17	80,697,465	100.2%		

Consists of Derived Program Codes for:

- Selected Mercantile
- Alarm Installation
- Landowners
- Offices
- Welding
- Landscapers
- Home Health Care
- Exercise and Health

8.4% decline in already low loss ratios from older years to more recent

Consists of the following business, by Derived Program Code & noted features:

- Condo Associations in NY and FL
- Apartments in CA
- Motels
- Bars and Taverns
- Class 040006 (Adult Day Care) in TX, CA, NY & FL
- Artisan Contractors (excluding NYLL) in subcontracted Classes (091585 & 091583)

- Consists of all other business excluding New York Labor Law (NYLL). NYLL classes were excluded as Nationwide E&S has exited that business
- Increased 7.1% in more recent years
- There likely remains significant opportunity to further segment this business

- Defined as the combination of labor law exposure and the NY insured state
- An exclusion was introduced in 2015 to address the issues with labor law. This exclusion made the product unattractive in the market
- Resulting shifts in the business could distort Tiering indications without adjustment
- Note in a runoff contractor book, audit premiums tend to artificially lower the runoff year loss ratios

Agenda

Topic
Reserve Modernization – Refresh
Industry Overview – Current Pilots and Uses
Applications of Reserve Modernization
Case Studies
Results Interpretation & Visualization

Model lift

Coverage one incremental paid loss model

Lift charts show the performance of the model on the test dataset (14Q1 – 16Q4).

- Predictions are binned from low to high into deciles.
- The red line (Predicted)
 tracks well with the blue line
 (Actual), except for some
 under fitting.

Relative variable importance

— Method of ranking the variables in the model in terms of their "importance"

 Importance of a variable calculated by crediting it with the reduction in the sum of squares

 Scaling done so that the variable with the largest reduction in sum of squares is one

Partial dependency plots

 Tool for visualizing the relationship of variables with target variable.

 Helpful with machine learning methods to provide more insight into the models

 Partial dependence represents the effect of a predictor(s) on target variable after accounting for the average effects of the other predictors.

 Use caution if the variable whose partial dependence you are calculating has interactions with the remaining variables

POJO review

- Final tree structure can be viewed in "Plain Old Java Object" format
- Interpretation of variable usage in tree structure
 - Variable type
 - Tree split points

```
// Column domains. The last array contains domain of response column.
public static final String[][] DOMAINS = new String[][] {
    /* ClaimType */ model gbm validation ColInfo 0.VALUES,
    /* ClaimDescriptionCode */ model gbm validation ColInfo 1.VALUES,
    /* ClaimState */ model gbm validation ColInfo 2.VALUES,
    /* DevelopmentMonth */ null,
    /* ClaimMonth */ null,
    /* TPAIndicator */ model gbm validation ColInfo 5.VALUES,
    /* StatutoryCo */ model gbm validation ColInfo 6.VALUES,
    /* CededIndicator */ null,
    /* UnderwritingOffice */ model gbm validation ColInfo 8.VALUES,
    /* ClassGrouping */ model gbm validation ColInfo 9.VALUES,
    /* InitialExpectedLoss */ null,
};
```

```
class model gbm validation Tree 0 class 0 {
 static final double score0(double[] data) {
                       (Double.isNaN(data[8]) || data[8 /* UnderwritingOffice */] <20.5f ?
         (data[7 /* CededIndicator */] <1.0002446f ?</pre>
             (Double.isNaN(data[10]) || data[10 /* InitialExpectedLoss */] <14186.336f ?
                78.54965f:
                25125.646f):
             (data[10 /* InitialExpectedLoss */] <-12199.999f ?</pre>
                -21045.748f :
                -1463.4309f)):
         (Double.isNaN(data[10]) | data[10 /* InitialExpectedLoss */] <120323.08f ?
             (!Double.isNaN(data[0 /* ClaimType */]) && (GenModel.bitSetIsInRange(GRPSPLIT0, 0, data[0]) && !GenModel.bitSetContains(GRPSPLIT0, 0, data[0])) ?
                -878.5838f :
                771.9814f):
            22522.334f));
    return pred:
 } // constant pool size = 31B, number of visited nodes = 6, static init size = 30B
 // {01000100 00101010 10000000 00011100}
 public static final byte[] GRPSPLIT0 = new byte[] {34, 84, 1, 56};
```


Data Visualization - Granular Investigation

Data Visualization - Granular Investigation

Thank you

Nate Loughin

Office: 610-230-2068

Cell: 610-348-5126

nloughin@kpmg.com

Frankie Logan

Office: 610-263-2901

Cell: 307-575-0945

flogan@kpmg.com

Appendix:

Machine Learning Basics

Evaluating different modeling methods

Model types

- A tree is a simple set of splitting rules on the data, what we call a "weak learner"
- A group of "weak learners" can come together to form a "strong learner"

Example – not derived from any company sources

Random Forest is a collection of "weak learners" (trees) built using bootstrap sample of training data. The prediction is a combination of predictions over the individual trees.

Gradient Boosting is a collection of "weak learners" (trees) used sequentially, with each tree focused on improving the prediction of the previous tree. In each step a bootstrap sample of data is taken. A tree is fit to the "current residuals" and the residuals are updated for the next step.

Gradient Boosted Regression Trees

What's in a name?

Gradient Boosting

 Machine learning technique that combines many weak models into a stronger model (ensembling)

Regression Tree

 Predictive model that can be represented using a tree

First described by Friedman (2001).

Some Heuristics*

One decision tree

*via a very simplified illustrative example

Some Heuristics

One decision tree

AY	Dev	Increm loss	Predicted	Residual
2000	1	5,000	5,000	0
2000	2	7,000	5,000	2,000
2000	3	4,000	3,000	1,000
2000	4	2,000	3,000	-1,000
2001	1	4,500	5,000	-500
2001	2	6,500	5,000	1,500
2001	3	3,500	3,000	500
2002	1	5,500	6,500	-1,000
2002	2	7,500	6,500	1,000
2003	1	6,000	6,500	-500

Some Heuristics

Some Heuristics

Boosting (more decision trees...)

AY	Dev	Residual (1 st tree)	Prediction (2 nd tree)	Residual (2 nd tree)	
2000	1	0	1,500	-1,500	/
2000	2	2,000	1,500	500	
2000	3	1,000	1,500	-500	
2000	4	-1,000	-1000	0	
2001	1	-500	1,500	-2,000	
2001	2	1,500	1,500	0	
2001	3	500	1,500	-1,000	
2002	1	-1,000	-500	-500	
2002	2	1,000	-500	1,500	
2003	1	-500	-500	0	

2,000 - 1,500 = 500

Each tree tries to correct the error of the previous trees. By constructing a sequence of many trees we'll have ourselves a decent model.

There are many ways to specify a GBM algorithm; as examples,

Number of trees

Depth of trees

Learning rate

There are many ways to specify a GBM algorithm

- Number of trees
- Depth of trees
- Learning rate
- Sampling rate of training data
- Sampling rate of predictors
- ...

- 50, 100, 200
- 1, 5, 20
- 0.01, 0.1
- 0.5, 0.8
- 0.5, 0.8
- ...

How do we pick the best one(s)?

- Number of trees
- Depth of trees
- Learning rate
- Sampling rate of training data
- Sampling rate of predictors
- ...

- 50, 100, 200
- 1, 5, 20
- 0.01, 0.1
- 0.5, 0.8
- 0.5, 0.8
- •

3(3)(2)(2)(2) = 72 combinations!

"Autopilot"

3(3)(2)(2)(2) = 72 combinations!

 Models are fit using each of the 72 combinations and are compared using crossvalidation, the combination of hyperparameters with the lowest MSE is then fit to the total data set.

"Autopilot"

3(3)(2)(2)(2) = 72 combinations!

- Models are fit using each of the 72 combinations and are compared using crossvalidation, the combination of hyperparameters with the lowest MSE is then fit to the total data set.
- We can feed into our funnel more than one type of algorithm. In other words, we can simultaneously test GBM, GLM, and other techniques such as Random Forests or Neural Networks, much like actuaries considering Chain Ladder and Bornhuetter-Ferguson

"Autopilot"

3(3)(2)(2)(2) = 72 combinations!

- Models are fit using each of the 72 combinations and are compared using crossvalidation, the combination of hyperparameters with the lowest MSE is then fit to the total data set.
- We can feed into our funnel more than one type of algorithm. In other words, we can simultaneously test GBM, GLM, and other techniques such as Random Forests or Neural Networks, much like actuaries considering Chain Ladder and Bornhuetter-Ferguson.
- Instead of building one model, we build a pipeline which generates a model on its own for subsequent review dates.

Some or all of the services described herein may not be permissible for KPMG audit clients and their affiliates.

kpmg.com/socialmedia

The information contained herein is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.

© 2017 KPMG LLP, a Delaware limited liability partnership and the U.S. member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved. NDPPS 718321

The KPMG name and logo are registered trademarks or trademarks of KPMG International.