
naic.arima.3 = function (model, nruns, t, block) {

function runs “nruns” simulations

model needs to be of the Arima type

starts at an arbitrary place on the actual data and then bootstraps from centered

residuals

assumes data is log transformed

extract and center residuals

resid_cent = model$residuals - mean(model$residuals)

min_start = max(model$arma)+2

max_start = length(model$x)

initiate result matrix

sim_normal = vector(length=nruns)

sim_results = matrix(NA, nrow = nruns, ncol = t)

for (i in 1:nruns) {

#re-initializing vectors

init_location = 0

resid_vector = 0

short_data = 0

stack = ceiling(t/block)

 #creating run-specific

#random selection of simulation starting location is at the core of “through

the cycle”

 init_location = sample((min_start:max_start), size=1)

 init_location2 = init_location-1

 resid_vector = vector()

for (j in 1:stack) {

samples blocks of residuals to create a new vector for simulation

 resid = 0

 resid = sample((max_start-block), size= 1)

 resid_vector = append(resid_vector, resid_cent[resid:(resid+block)])

 }

 resid_vector = resid_vector[1:t] # truncates vector so that length = t

 short_data = model$x[1:init_location2]

create an Arima object and simulate

sim_arima = Arima(short_data, model = model) # version 1

sim_normal[i] = model$x[init_location]

sim_results [i,] = simulate (sim_arima, nsim = t, bootstrap = FALSE, innov =

resid_vector)

}

results = cbind(sim_normal,sim_results)

results = exp(results) # assuming log model

results = results/results[,1]

return (results)

}

