Insurance Business
Diversification and
Systemic Risk

Fabian Regele, International Center for Insurance Regulation (ICIR)
Goethe-University Frankfurt
Insurance Business Diversification and Systemic Risk

Fabian Regele
International Center for Insurance Regulation (ICIR)
Goethe-University Frankfurt
regele@finance.uni-frankfurt.de

ABSTRACT

Risk diversification regarding business lines with imperfectly correlated cash flows can reduce the financial distress risk of an institution due to coinsurance effects. Therefore, business diversification might also lower systemic risk from a “domino” perspective, in which the financial distress of an institution causes financial contagion risks to other institutions that result in systemic risk. The underwriting of risks by insurers is typically considered not systemically risky by itself, providing the basis for the diversification of insurance business lines to potentially reduce systemic risk. Since life and non-life insurance lines generally show substantially different underwriting characteristics, this paper studies if the diversification of both insurance business lines can create a financially stabilizing diversification effect, therefore reducing systemic risk. By means of a theoretical portfolio model and empirical analysis, the findings suggest that diversified insurers engaging in both insurance lines have, on average, a lower contribution to systemic risk than monoline life and non-life insurers. More specifically, insurers with a business allocation in the range of 54% life insurance are, on average, associated with the lowest contribution to systemic risk. These findings have practical implications for the design of macroprudential insurance regulation, which currently neglects the financially stabilizing potential of the diversification of both insurance business lines.

JEL Classification: G00, G01, G22, G28, G32, L25

Keywords: Financial Institutions, Systemic Risk, Diversification

The author gratefully acknowledges research support from the Research Center SAFE, funded by the State of Hessen initiative for research LOEWE.
1. Introduction

The near-collapse of American International Group Inc. (AIG) during the global financial crisis of 2007–2009 is a prominent example of how insurers can contribute to systemic risk from the “domino” perspective. In that regard, systemic risk is considered the spillover of losses from a financially distressed insurer to other institutions through financial contagion, causing negative consequences for the real economy (European Insurance and Occupational Pensions Authority [EIOPA], 2019; International Association of Insurance Supervisors [IAIS], 2019b; International Monetary Fund [IMF], 2016). Therefore, macroprudential insurance regulation developed the concept of systemically important insurers in the aftermath of the global financial crisis. The main aim of this regulatory approach is to identify systemically relevant insurers, whose financial distress could result in systemic risk, and reduce the financial contagion risks associated with these specific insurers, particularly on the basis of increased monitoring by supervisors and higher capital requirements (EIOPA, 2019; IAIS, 2016). Although the identification of systemically relevant insurers through the indicator-based approach proposed by the IAIS has been controversially discussed (Chow et al., 2018), there is substantial evidence in the literature underlining that insurers can contribute to systemic risk (Kaserer and Klein, 2019; Bierth et al., 2015; Weiß and Mühlnickel, 2014; Billio et al., 2012).

Risk diversification regarding business activities typically reduces an individual institution’s distress risk through cash flow smoothing (Köhler, 2015; Stiroh, 2006). If the cash flows from different business activities are imperfectly correlated, a coinsurance effect can emerge that stabilizes the financial condition of the diversifying institution (Hann et al., 2013). Thus, business diversification might also lower systemic risk from the “domino” perspective, as the financially stabilizing diversification effect should also reduce financial contagion risks. For example, if a financial institution gets hit by a shock, potential coinsurance effects between the business lines should reduce the institution’s financial distress risk and thus reduce the potential for a spillover of losses to other institutions that could result in systemic risk. For insurers, life and non-life insurance shows substantially different underwriting characteristics that might generate a coinsurance effect between both business lines that could reduce systemic risk. Moreover, findings by Cummins and Weiss (2014) and Harrington (2009) suggest that the insurance business in terms of underwriting risks does not contribute to systemic risk by itself. Thus, diversifying across insurance lines should reduce systemic risk rather than increase it. However, the insurance literature provides no clear evidence on the existence of a financially stabilizing diversification effect between life and non-life insurance and how it is linked to systemic risk. Therefore, this paper studies whether a diversification potential between life and non-life insurance exists and to what extent it affects the insurer’s contribution to systemic risk in terms of financial contagion.

1. The Individual Insurer Monitoring (IIM), as part of the Global Monitoring Exercise (GME) within the IAIS’s Holistic Framework for Systemic Risk in the Insurance Sector, aims to assess systemic risk from the domino perspective. By means of an indicator-based methodology and a sample of approximately 60 large international insurance groups from 18 jurisdictions, the IIM assesses and monitors potential contagion risks that could stem from an individual insurer’s financial distress (IAIS, 2021).
It is important to study the link between the diversification of insurance business lines in terms of life and non-life insurance and systemic risk, since current macroprudential insurance regulation in terms of the IAIS’s IIM does not take it into account so far. The IAIS evaluates the systemic relevance of individual insurers through an indicator-based model in the IIM exercise as part of the GME. The indicator-based model focuses on insurer characteristics (e.g., size) and takes the insurer’s activities more into account than the previous methodology for the currently suspended identification of systemically important insurers, but the model does not consider a potentially risk reducing effect of insurance business diversification on systemic risk (IAIS, 2021). The indicator-based model has been generally debated controversially, leading to the exclusion of MetLife from the list of systemically important insurers by court decision in 2016 (MetLife, Inc. v. Financial Stability Oversight Council, 2016). Therefore, findings on the influence of insurance business diversification on systemic risk, as derived in this paper, could help to develop macroprudential insurance regulation further. For example, supplementing the indicator-based approach by taking the potentially risk reducing diversification effect into account could reduce macroprudential regulatory costs (Naubert and Tesar, 2019), as supervisors can allocate their monitoring efforts more precisely to the insurers that potentially destabilize the financial system most.

Therefore, Section 2.1 studies the differences in the underwriting characteristics between life and non-life insurance and potential implications on a financially stabilizing diversification effect. Quantitative evidence on cash flows related to both insurance lines suggests the existence of a diversification effect. Cash flows related to life insurance are less volatile and mainly uncorrelated with cash flows related to non-life insurance. A theoretical portfolio model demonstrates in Section 2.2 how business diversification between life and non-life insurance could influence systemic risk. The model focuses on counterparty risk as an important channel for financial contagion resulting in systemic risk (IAIS, 2019b). Due to the imperfectly correlated cash flows from life and non-life insurance, the model predicts a u-shaped relation between systemic risk and the business allocation between both insurance lines. More specifically, the model suggests the existence of a systemic risk minimizing insurance business allocation with an overweight towards the less volatile life insurance business. Therefore, Section 3 provides the empirical model to test the theoretical hypotheses on the influence of insurance business diversification on systemic risk in terms of financial contagion. The insurer’s contribution to systemic risk is estimated by the ΔCoVaR, which is a frequently used empirical systemic risk measure originally proposed by Adrian and Brunnermeier (2016). In contrast to an indicator-based measurement of an insurer’s contribution to systemic risk using accounting data, the ΔCoVaR uses the insurer’s stock returns as input, thereby reflecting the market’s perspective on systemic risk in a forward-looking manner. The systemic consequences of an insurer’s distress are estimated on the global banking, insurance and non-financial sector. The panel regression on a sample of 68 international insurers from 2000 to 2020 in Section 4 supports the existence of a u-shaped relation between insurance business diversification in terms of life and non-life insurance and systemic risk. In line with the theoretical findings, the empirical evidence demonstrates the beneficial impact of diversification on systemic risk, highlighting the need for regulatory frameworks that explicitly consider the risk-reducing effects of diversification (IAIS, 2021).
hypotheses, undiversified monoline insurers conducting only life or non-life insurance show, on average, the highest level of systemic risk in terms of financial contagion. In particular, the results show that systemic risk, on average, can be minimized through a business allocation in the range of 54% life insurance and 46% non-life insurance. Section 4.3 then discusses potential policy implications of the findings. Monoline life and monoline non-life insurers should be monitored more closely than diversified insurers, as undiversified insurers are associated with higher financial contagion risks if they get hit by a shock. Since macroprudential insurance regulation regarding the IAIS’s IIM does not take the extent of insurance business diversification between life and non-life insurance into account, supervisors could use the insurer’s business allocation as a further indicator for assessing the systemic relevance of insurers.

This paper is based on a broad stream of literature. It generally adds further insights to the insurance diversification literature. Previous research (e.g., Shim, 2017b; Che and Liebenberg 2017; Berry-Stölzle et al., 2012; Elango et al., 2008 and Liebenberg and Sommer 2008) focuses on the effects of product diversification within the non-life insurance business on the insurer’s financial performance. However, evidence regarding the influence of insurance business diversification in terms of life and non-life insurance on financial stability at the individual insurer- and macroeconomic-level is largely missing. Therefore, this paper provides important findings underlining the existence of a financially stabilizing diversification potential between life and non-life insurance. The paper also contributes to the systemic risk literature, particularly with a focus on an insurer’s characteristics and activities that contribute to systemic risk. Previous work (e.g., Kaserer and Klein, 2019; Irresberger et al., 2017; Bierth et al., 2015; Weiß and Mühlnickel, 2014; Cummins and Weiss, 2014 and Billio et al., 2012) studies the influence of several insurer-related characteristics and activities on systemic risk. These studies categorize insurers into life or non-life insurers but neglect potential diversification effects between both insurance lines regarding systemic risk. In contrast, Kaserer and Klein (2019) explicitly categorize multiline insurers in the insurer sample but do not study the influence of the differences in the insurers’ business allocation on systemic risk. Therefore, this paper uses a continuous measure of the insurer’s business allocation and studies the marginal influence of the diversification of insurance business lines on systemic risk. The findings of this paper provide important suggestions to further improve current macroprudential insurance regulation. Moreover, the findings of the paper also contribute to a further alignment of micro- and macroprudential regulatory aims. While microprudential insurance regulation focuses on reducing the individual insurer’s distress risk, it does not consider potential implications on a macroeconomic level (EIOPA, 2017). Hence, providing evidence on how the diversification of insurance business lines at the microprudential insurer level also affects systemic risk at the macroprudential level helps to further synchronize micro- and macroprudential insurance regulation.

The rest of the paper is structured as follows. Section 2 studies the diversification potential between life and non-life insurance and its potential influence on the insurer’s contribution to systemic risk in terms of financial contagion. Section 3 outlines the empirical model, and Section 4 presents the results, followed by a discussion of policy implications in Section 4.3. Section 5 concludes the paper.
2. The Impact of Business Diversification on Systemic Risk

The case of the AIG during the global financial crisis of 2007–2009 has shown that the financial distress of an individual insurer can cause systemic risk. The huge losses the AIG has incurred, mainly resulting from its non-insurance activities in terms of credit default swap (CDS) trading and security lending transactions (McDonald and Paulson, 2015), caused substantial contagion risks to other institutions in the financial system. In that regard, three particular channels were mainly responsible for the systemic relevance of the AIG during the crisis (Financial Stability Oversight Council (FSOC), 2013b): i) counterparty risks of other financial institutions to the AIG; ii) potential loss spirals in asset prices due to fire sales of the AIG’s assets; and iii) a lack of substitutability for policyholders in the commercial insurance market, in which the AIG was a market player. In order to limit systemic risk stemming from an individual insurer’s distress, macroprudential insurance regulation builds on the concept of systemically important institutions, aiming to reduce the distress risk of individual insurers and thereby lowering potential contagion risks (EIOPA, 2019; IAIS, 2019b; IMF, 2016).

Eling and Jia (2018) find the level of insurer’s business volatility to be a determinant for the insurer’s financial distress risk. Since the underwriting of risks is typically not systemically risky by itself (Cummins and Weiss, 2014; Harrington, 2009), and given that underwriting risks of life and non-life insurance business differ substantially from each other, a combination of both insurance lines might create a financially stabilizing diversification effect. From a classic portfolio perspective, the diversification effect should reduce the volatility of a diversified insurer’s equity cash flow and therefore reduce the insurer’s financial distress risk, resulting in lower systemic risk in terms of financial contagion. However, the diversification between life and non-life insurance lines has not been taken into account so far by macroprudential insurance regulation regarding the IAIS’s IIM (IAIS, 2021; IAIS, 2019a). Moreover, evidence on the potential diversification effect between life and non-life insurance is largely missing in the literature, since most studies in the context of insurance business diversification focus on product diversification in the non-life insurance segment (Shim, 2017b; Che and Liebenberg, 2017; Berry-Stölzle et al., 2012; Elango et al., 2008; Liebenberg and Sommer, 2008). Therefore, the subsequent sections study whether a combination of life and non-life insurance business could potentially create a financially stabilizing diversification effect for insurers.

2.1 Cash Flow Characteristics of Insurance Activities

Life insurance is typically considered as a long-term business, and the underlying insurance claims and the growth in insurance reserves are usually more predictable than that in the short-term non-life insurance business (Gründl et al., 2016; Insurance Europe, 2014). For example, death benefit payments in life insurance are fixed upon the purchase of contracts, whereas indemnity payments in non-life insurance are uncertain ex ante to a loss event. However, even ex post to a loss event, non-life insurers can have substantial payout tails due to the uncertainty in the exact amount of indemnity payments to settle the claims incurred (Cummins and Weiss, 2016). Thus, payout tails can further raise the volatility of non-life underwriting cash flows compared
to life insurance. Moreover, the premium income from short-term non-life insurance products typically fluctuates more over time compared to life insurance products. The average duration of a life insurance contract with a typically fixed premium level is more than 10 years, whereas it is usually one year for non-life insurance contracts (Bank of England (BoE), 2015b; EIOPA, 2014a). Moreover, the short-term pricing principle in non-life insurance allows insurers to adjust their premiums frequently; i.e., in reaction to market developments or changes in the underwriting risk exposure.

These distinctive differences between life and non-life insurance suggest that cash flows from non-life insurance business tend to be more volatile than cash flows from life insurance (BoE, 2015b). For insurers providing both insurance lines, a diversification potential generating financially stabilizing coinsurance effects could emerge. For example, by means of profit and loss transfer agreements, a holding company consisting of a life and a non-life insurance subsidiary can hedge losses from one insurance line with profits from the other insurance line. As insurers tend to have a high asset commonality despite different business models, for instance due to regulatory incentives in terms of risk- and rating-based capital requirements, it is likely that a potentially stabilizing diversification effect between life and non-life insurance mainly stems from the distinctive underwriting differences between both insurance lines (Getmansky et al., 2018; BoE, 2014; FSOC, 2013a).

Table 1 motivates the potential for a financially stabilizing diversification effect between life and non-life insurance based on insurance-related cash flows from a sample of 56 pure monoline life and non-life insurers from 2005 to 2019. The cash flow analysis shows that life insurers have, on average, substantially lower volatility levels in their premium and claim cash flows (0.12/0.27) than non-life insurers (0.23/0.58). Since the average correlation between life and non-life insurers regarding premium income (0.02) and claim payments (0.03) is close to zero, combining both insurance lines could lead to a financially stabilizing diversification potential that lowers the diversified insurer’s distress risk compared to an undiversified monoline life or non-life insurer.

Table 1: Volatility and Correlation of Premium and Claim Cash Flows

<table>
<thead>
<tr>
<th></th>
<th>Life St. Dev.</th>
<th>Non-Life St. Dev.</th>
<th>Life & Non-Life Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Income</td>
<td>0.12</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>Underwriting Claims and Benefits</td>
<td>0.27</td>
<td>0.58</td>
<td>0.03</td>
</tr>
</tbody>
</table>

This table shows the average standard deviation (St. Dev.) of the annual growth rates regarding cash flows in terms of premium income and underwriting claims and benefit payments. Correlation shows the average Pearson correlation coefficients between the growth rates of the life and non-life insurance-related cash flows. Premium income is measured by the growth rates on insurers’ net premiums earned in the life insurance line, approximated by Life & Health insurance, and in the non-life insurance line, approximated by Property/Casualty (P/C) insurance. Underwriting claims and benefit payments are measured by insurers’ growth rates on claims and benefit payments in the respective insurance lines. The sample consists of 56 insurers from 2005-2019, and data is retrieved in U.S. dollars from SNL Financial (S&P Global Market Intelligence). Details on the sample and data is given in Appendix A.1.

However, studying the diversification potential of life and non-life insurance at the individual insurer level is not informative about the influence of business diversification
on the tail dependence between financial institutions and therefore how economic shocks can propagate through the system by means of financial contagion. Therefore, the subsequent part derives an economic intuition on the potential influence of insurance business diversification on systemic risk in terms of financial contagion. The analysis is based on an exemplary theoretical portfolio model and derives testable implications for empirical validation.

2.2 Theoretical Portfolio Model

The theoretical portfolio model illustrates how the diversification of insurance business lines can influence systemic risk in terms of financial contagion from a distressed insurer to other institutions. The model approximates systemic risk by means of counterparty credit risk, which is an important transmission channel for shocks to create systemic risk (IAIS, 2019b; FSOC, 2013b). The model’s underlying rationale is that the insurer has financial linkages to other institutions (e.g., due to derivatives trading or security lending activities), and it can become financially distressed in case of a shock, which leads to a loss propagation to the insurer’s counterparties if the insurer fails to repay its financial obligations.3 In that regard, the model illustrates the case of the AIG during the financial crisis of 2007–2009, as substantial losses from the AIG’s CDS and security lending transactions threatened the stability of the entire financial system due to contagion risks (McDonald and Paulson, 2015).

The model is based on a portfolio perspective of an insurance holding that can invest in one life and one non-life insurance company. This setup is similar to the one employed by Kahane and Nye (1975) to examine the efficiency of insurance underwriting portfolios; and more recently, Stiroh (2006) uses a similar framework to study diversification effects of interest and non-interest cash flows on the financial performance of banks. At time \(t = 0 \), the insurance holding invests the fraction \(\alpha \in [0,1] \) in the life (L) and the residual amount \(1 - \alpha \) in the non-life (NL) insurance company. After one period of time, both subsidiaries generate normally distributed equity cash flows, \(R_L \) and \(R_{NL} \), that are aggregated by the allocation term \(\alpha \) to the holding company’s total equity cash flow \(R \).4 The insurance holding is obligated to serve a claim \(D \) to a counterparty at time \(t = 1 \). For instance, \(D \) might be the repayment of subordinated debt issued by the holding company at time \(t = 0 \). If the holding company is in financial distress (e.g., resulting from a shock to the subsidiaries’ equity cash flows), the counterparty might suffer a loss due to financial contagion. The counterparty’s expected loss can be described by using a truncated normal distribution as:

\[
EL = D - E [\min(D,R)] = (D - \mu_R) \Phi \left(\frac{D - \mu_R}{\sigma_R} \right) + \sigma_R \Phi' \left(\frac{D - \mu_R}{\sigma_R} \right)
\]

where \(\Phi \) is the cumulative distribution function, \(\Phi' \) is the probability density function of the normal distribution, and \(\mu_R \) and \(\sigma_R \) are the expectation and variance of the insurance holding’s equity cash flow \(R \) at time \(t = 1 \).

3. In Q1 2017, the sum of security repurchase agreements, loans and security lending liabilities comprised 2.3% (0.7%) of U.S. life (non-life) total liabilities (Board of the Governors of the Federal Reserve System, 2017).

4. It is assumed that the holding has a profit/loss transfer agreement with its subsidiaries and the holding’s investment decision does not affect the activities of the subsidiaries in terms of their existing capital structures.
EL reflects the value of a European put option at strike D on the holding’s equity cash flow R. If the holding’s cash flow R is smaller than D, the counterparty expects a loss in terms of $D - E[\min(D,R)]$. From option pricing theory, it follows that the price of a European put option is increasing with the underlying asset’s volatility.\(^5\) Hence, the expected loss for the counterparty is influenced by the volatility of the holding’s total equity cash flow, which is given by:

$$\sigma_R^2 = \alpha^2 \sigma_L^2 + (1 - \alpha)^2 \sigma_{NL}^2 + 2 \alpha(1 - \alpha) \sigma_L \sigma_{NL}$$

where ρ is the correlation between the life and non-life subsidiaries’ equity cash flows, α denotes the fraction of the life insurance business regarding the total equity cash flow R, and σ_L and σ_{NL} denote the volatility of the equity cash flows from the life and non-life insurance subsidiaries, respectively.

The expected loss for the counterparty can then be reduced by finding a solution to the first order condition regarding the business allocation parameter α. By assuming a negligible difference between the expected equity cash flows from life and non-life insurance for illustrative reasons, the first order condition is given by:

$$\frac{\partial EL}{\partial \alpha} = (D - \mu_R) \frac{\partial \Phi(z)}{\partial \alpha} + \sigma_R \Phi'(z) + \sigma_R \frac{\partial \Phi'(z)}{\partial \alpha}$$

$$= \frac{1}{2\sigma_R} \Phi'(z) \frac{\partial \sigma_R^2}{\partial \alpha}$$

which yields the expected loss minimizing life insurance business allocation α^* for the holding company by the minimum variance portfolio allocation as:

$$\alpha^* = \frac{\sigma_{NL}^2 - \sigma_L \sigma_{NL} \rho}{\sigma_L^2 + \sigma_{NL}^2 - 2\sigma_L \sigma_{NL} \rho}$$

A detailed derivation is provided in Appendix A.2. Based on the model, business diversification between life and non-life insurance can reduce financial contagion in terms of counterparty credit risk if the correlation ρ between the equity cash flows from both insurance business lines is sufficiently small. As Section 2.1 suggests almost uncorrelated cash flows between life and non-life insurance, a diversifying multiline insurance company should reduce systemic risk in terms of financial contagion compared to an undiversified life or non-life monoline insurer (Hypothesis I). Hence, the relationship between systemic risk and the insurance business allocation between life and non-life insurance (α) should be captured by a u-shaped relation. As Section 2.1 suggests that life insurance is less volatile than non-life insurance, the optimal life insurance business allocation α^* minimizing systemic risk in terms of financial contagion should be higher than 50% (Hypothesis II).

3. Data

\(^5\) This follows from a positive vega of European put options.
In order to test the theoretical hypotheses from the portfolio model on the influence of business diversification between life and non-life insurance, the following section outlines the construction of the insurer sample and defines the empirical model.

3.1 Sample Construction

Publicly listed insurers from all geographic regions in SNL Financial (S&P Global Market Intelligence) are selected over the time period of 2000 to 2020. In order to mitigate selection bias, insurers that are listed as out of business or acquired are included in the sample. Then, all insurers without an International Securities Identification Number (ISIN), with missing data on the premium income, and very small insurers with total assets smaller than $60 million are omitted from the sample. The insurer’s stock price is collected as the daily close price and all data for the sample is collected in U.S. dollars to mitigate a currency bias. In order to ensure sufficient liquidity in the data, insurers with less than five years of data and firm-year observations with less than 200 daily returns per year are omitted from the sample. Moreover, due to a potential bias from over the counter (OTC) deals, insurers with a daily stock return of more than 80% or less than -80% and firm-year observations in which more than 25% of daily returns are zeroes are omitted. The data cleaning results in a sample of 159 international insurers that represent the global insurance system (INS) for the analysis (see Table 14).

The business model of insurers is typically very stable, and pure monoline life and non-life insurers usually do not change their business model over time. As the insurance business allocation of monoline insurers does not provide sufficient variation in the data that can be used to study the marginal impact of business diversification between life and non-life insurance on systemic risk, the final sample for the baseline regression analysis consists of multiline insurers engaging in both insurance lines and economic monoline insurers that allocate 99% of their premium income to either life or non-life insurance. Robustness checks are also conducted on an insurer sample, including monoline insurers with 100% premium income from either life or non-life insurance. The final sample for the regression analysis consists of 68 insurers with observations from 2000 to 2020, and most insurers are located in Europe (40%), followed by North America (27%) and Asia-Pacific (19%). The list of insurers is given in Table 10 in Appendix A.3.

3.2 Systemic Risk Measure

Since the analysis is focusing on systemic risk in terms of financial contagion from a distressed insurer to other institutions in an economic system, the ∆CoVaR as empirical systemic risk measure is used. The measure has been originally proposed by Adrian and Brunnermeier (2016) and has been used frequently under different estimation approaches in the systemic risk literature (Brunnermeier et al., 2020; Bierth et al., 2015; Weiß and Mühlnickel, 2014; Mainik and Schaanning, 2014; Ergün and Girardi, 2013). Adrian and Brunnermeier (2016) suggest measuring an institution’s systemic
risk contribution, ΔCoVaR, by the difference between the system’s tail risk upon an institution’s shock; i.e., the system’s Value-at-Risk (VaR) conditional on institution i being in distress and the system’s tail risk if the institution is in its median state. Thus, the measure captures the potential that a financially distressed insurer contributes additional losses to other institutions in a given system and is defined as:

$$\Delta\text{CoVaR}_q^S = \text{CoVaR}_{r=q}^S - \text{CoVaR}_{r=0.5}^S$$

where q denotes the quantile level of equity returns for a given system S and insurer i. In line with the literature, the 5% quantile of stock returns is used to indicate financial distress, corresponding to the insurer’s 5% worst returns (Bierth et al., 2015).

The conditional ΔCoVaR captures the time-varying dependence between the tail risks of the institution and the system under consideration, and it is estimated based on a set of state variables, as given in Appendix A.4. For the estimation, three different systems are employed. First, and similar to Bierth et al. (2015), the global banking system (BAN), represented by the MSCI World Banks Index, is used in order to study the potential spillover of losses from insurers to banks. Second, the global insurance system (INS), represented by a self-constructed index of 159 insurers, is employed. For each insurer-specific ΔCoVaR estimation, an own index consisting of the residual 158 insurers in the system is constructed, because a contemporaneous inclusion of the insurer under consideration in the index would bias the estimation by a constructed correlation. Third, in contrast to previous studies that focus only on contagion risks from a distressed insurer to the financial system (Bierth et al., 2015; Weiß and Mühlnickel, 2014), a global non-financial system (NoFin) is employed in order to study the direct impact of an insurer’s distress on the real economy. The NoFin is represented by Datastream’s World Non-Financial Index, which covers firms from different industrial sectors (e.g., food, pharmaceuticals or software, and different geographical regions). A detailed description of the systems employed is given in Appendix A.4. The estimation of the ΔCoVaR is based on daily return data, which is collapsed into weekly frequency for the quantile regressions. For the panel regression with yearly balance sheet and income statement data, the annual mean value of the weekly estimates is then taken to represent the average systemic risk contribution of an insurer in a given year. Estimates of the ΔCoVaR are reported in negative values, such that a higher value relates to a higher systemic risk contribution.

3.3 Explanatory Variables

The main variable of interest is the insurer’s business diversification between life and non-life insurance. The ratio of net premiums earned in life/health (L/H) insurance relative to the total net premiums earned, including life and non-life insurance, is used to capture the influence of the diversification of insurance business lines on systemic risk.\footnote{Health business in that regard refers to premium income from health insurance products with similar underwriting characteristics to life insurance. These products are from a regulatory perspective typically allocated to life insurance (e.g., for Solvency II in the European Union [EU]: Article 1 No. 38 and Annex I of Commission Delegated Regulation 2015/35, [EIOPA, 2014b]; for the U.S.: 26 U.S. Code Section 816 [a/b]).} Net premiums earned capture the underwriting risk taken by the insurer, and since these premiums are net of reinsurance, the ratio mitigates a potential reinsur-
ance bias in the results. The ratio is a continuous measure of the insurer’s business
diversification extent, indicating by a value of 0 a monoline non-life insurer and by a
value of 1 a monoline life insurer. Hence, the measure is able to capture the marginal
effect of changes in the business allocation on systemic risk, in contrast to frequently
used binary measures that categorize insurers only into diversified or undiversified
insurers (Liebenberg and Sommer, 2008). The regression model uses a quadratic
term on the life ratio in order to capture a potentially u-shaped relation between
insurance business diversification in terms of life and non-life insurance and systemic
risk in terms of financial contagion.

The regression model controls for several insurer characteristics that could influ-
ence systemic risk. The insurer’s size is approximated by the natural logarithm of the
insurer’s total assets. For instance, Weiß and Mühlnickel (2014) find an insurer’s size
to be significantly related to the insurer’s systemic risk contribution, and it is also an
important determinant in the indicator-based model to identify systemically relevant
insurers (IAIS, 2021). Furthermore, work by Irresberger et al. (2017), the IMF (2016), and
Cummins and Weiss (2014) underline the importance of the insurer’s size for systemic
risk. The general rationale is that large insurers are more likely to be “too-big-to-fail”
as well as “too-complex-to-fail” than small insurers and, hence, potentially engage in
riskier activities and propagate shocks more easily to other institutions (IAIS, 2016).
Moreover, large insurers are more likely to hold and sell similar assets, potentially
causing adverse fire sale effects to other large institutions, which increases systemic
risk (Getmansky et al., 2018; Ellul et al., 2018; Ellul et al., 2011). Hence, the insurer’s size
is expected to increase the insurer’s systemic risk contribution in terms of financial
contagion.

The global financial crisis of 2007–2009 has shown that duration mismatches
between assets and liabilities can contribute to systemic risk in terms of financial
contagion (Brunnermeier et al., 2009; Brunnermeier, 2009). Banks usually finance
their assets by means of debt obligations under potentially substantial duration
mismatches. However, since insurers typically finance their assets by “equity-like”
insurance premiums paid upfront by policyholders and follow duration matching
principles between assets and liabilities, leverage should be measured differently for
insurers compared to banks (Thimann, 2014; Kessler, 2013). Therefore, the baseline
regression model follows Shim (2017a) by defining leverage in terms of the ratio of net
premiums earned to policyholder surplus and refrains from using a more bank-oriented
definition (e.g., by means of a debt to equity ratio). Since Chen and Wong (2004) and
Carson and Hoyt (1995) show that higher leverage ratios can increase the insurer’s
distress risk, a higher leverage ratio should increase systemic risk.

Insurers also engage in non-insurance related activities that can influence contagion
risks; i.e., derivatives trading or security lending activities as in the case of the AIG
(McDonald and Paulson, 2015). The model controls for an insurer’s non-core activities
in line with Bierth et al. (2015) by using the ratio of total liabilities over insurance
reserves. A higher ratio for non-core activities should increase the insurer’s externalities
in the system and, hence, increase systemic risk in terms of financial contagion. To
capture differences in the underwriting portfolios of insurers (e.g., in terms of insur-
ance products, which could influence the insurer’s financial distress risk), the model
includes the net-claims ratio defined as the ratio of total net claims and benefits to total net premiums earned. It is expected that a higher net-claims ratio increases the insurer’s distress risk due to higher underwriting losses and thereby increases the insurer’s contribution to systemic risk. The insurer’s operating profitability can also influence financial contagion risks (Bierth et al., 2015; Weiß and Mühlnickel, 2014). As insurers are typically conservative investors, a higher return on their investment (RoI) could increase the profitability and resilience against shocks. Thus, a higher RoI might lower the insurer’s contribution to systemic risk due to lower distress risk. However, higher investment returns might also be associated with higher investment risks, which could increase the insurer’s contribution to systemic risk in case of a shock. The model employs the insurer’s RoI defined as the ratio of absolute investment income to total assets and expects the influence on systemic risk to be unrestricted. In order to capture the general influence of the insurer’s profitability on systemic risk, the model uses the insurer’s return on equity (RoE) and expects the influence to be unrestricted.

3.4. Regression Model

The multivariate panel regression is specified as follows:

\[Y_{i,t} = \beta_0 + \beta_1 \text{Life}_{i,t-1} + \beta_2 \text{Life}_{i,t-1} + \beta_3 Z_{i,t-1} + \epsilon_{i,t} \]

where \(Y_{i,t} \) stands for the ∆CoVaR estimate as a systemic risk measure of institution \(i \) in year \(t \), Life_{i,t} denotes the ratio of life insurance business to total insurance business, \(Z_{i,t} \) captures the control variables, and \(\epsilon_{i,t} \) denotes the error term. Table 9 in Appendix A.3 gives an overview of all variables used for the panel regression analysis.

Macroeconomic trends (e.g., the transition to the low interest rate environment on the capital markets) and regional trends, such as changing insurance demands or changes in the regulatory environment, are captured in the model by including year and geographic fixed effects. The model also uses clustered standard errors (SE) at the insurer-level to account for serial correlation within the insurer-related data. Since the business allocation of insurers is relatively persistent over time, using insurer-fixed effects would absorb most of the variation in the data. Therefore, the model follows van Oordt and Zhou (2018), Chow et al. (2018), and Liebenberg and Sommer (2008) by refraining from using insurer-fixed effects. To mitigate reverse causality inducing endogeneity, i.e., insurers adjust their business allocations to their contemporaneous contribution to systemic risk, the model follows Bierth et al. (2015) and Weiß and Mühlnickel (2014) by lagging all explanatory variables by one year. Due to the quadratic term for the life insurance ratio, the model might suffer from structural multicollinearity. Hence, the regression parameters are standardized with mean 0 and standard deviation 1 (López-Espinosa et al., 2009). The standardization also increases comparability between the marginal effects of the independent variables across the different systems employed in the ∆CoVaR estimation.

3.5. Descriptive Statistics

In line with the literature, the descriptive statistics in Table 2 show that the financial distress of insurers can contribute to systemic risk by causing additional losses to other institutions (Bierth et al., 2015; Weiß and Mühlnickel, 2014). The financial distress of
the average insurer in the sample increases the tail risk in the global banking sector (BAN) due to financial contagion by 0.4%, in the global insurance sector (INS) by 0.5%, and in the global non-financial sector (NoFin) by 0.3% per day. In particular, the spillover of losses from insurers is highest to other insurers, followed by banks and the real economy approximated by the NoFin. In contrast to previous studies that focus only on the spillover of losses from insurers to other financial institutions, the explicit inclusion of the NoFin in the sample highlights the direct transmission channel of shocks from insurers to the real economy. The average insurer allocates a fraction of 42% of its insurance business to life insurance, which constitutes an overweight to non-life insurance. The sample includes economic monoline insurers with 99% life and non-life insurance business. The size of the average insurer in the sample is $118 billion in total assets, which is larger than in Bierth et al. (2015) and Weiß and Mühlnickel (2014), but the sample also includes very small insurers ($78 million).

Table 2: Descriptive Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic Risk Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔCoVaR_{BAN}</td>
<td>0.004</td>
<td>0.002</td>
<td>−0.002</td>
<td>0.022</td>
</tr>
<tr>
<td>ΔCoVaR_{INS}</td>
<td>0.005</td>
<td>0.003</td>
<td>−0.002</td>
<td>0.024</td>
</tr>
<tr>
<td>ΔCoVaR_{NoFin}</td>
<td>0.003</td>
<td>0.002</td>
<td>−0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>Insurer Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Insurance Ratio</td>
<td>0.42</td>
<td>0.29</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>0.84</td>
<td>0.28</td>
<td>0.18</td>
<td>3.41</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>1.78</td>
<td>1.90</td>
<td>1.02</td>
<td>24.02</td>
</tr>
<tr>
<td>Leverage</td>
<td>1.34</td>
<td>1.16</td>
<td>0.03</td>
<td>21.94</td>
</tr>
<tr>
<td>Debt-to-Asset Ratio</td>
<td>0.07</td>
<td>0.12</td>
<td>0.0</td>
<td>0.71</td>
</tr>
<tr>
<td>Total Assets ($ billions)</td>
<td>117.8</td>
<td>208.3</td>
<td>0.078</td>
<td>1,181.0</td>
</tr>
<tr>
<td>Total Liabilities ($ billions)</td>
<td>107.1</td>
<td>194.1</td>
<td>0.031</td>
<td>1,058.5</td>
</tr>
<tr>
<td>RoI</td>
<td>0.03</td>
<td>0.02</td>
<td>−0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>RoE</td>
<td>0.09</td>
<td>0.09</td>
<td>−0.85</td>
<td>0.60</td>
</tr>
</tbody>
</table>

The table shows the descriptive statistics for the sample of 68 insurers over the time period 2000-2020 with 768 observations. ΔCoVaR is given for the CoVaR estimates regarding the BAN, INS and NoFin. The values for the CoVaR are presented with a negative sign; i.e., a higher value refers to a higher systemic risk contribution. Total Assets and Total Liabilities are given in $ billions. All definitions and data sources are summarized in Appendix A.3.

4. Empirical Analysis

The following section provides the results of the baseline panel regression on the influence of insurance business diversification between life and non-life insurance on systemic risk in terms of financial contagion. The section also provides the outcome of several robustness checks and discusses policy implications based on the results.
4.1. Results

Table 3 presents the results of the panel regression. The results support Hypothesis I from the theoretical portfolio model, suggesting that diversified multiline insurers reduce systemic risk compared to monoline life and non-life insurers. In particular, the quadratic and linear terms of the life insurance ratio are significantly related to the systemic risk measures with different signs, underlining the existence of a u-shaped relation between insurance business diversification in terms of life and non-life insurance and systemic risk.

Table 3: OLS Panel Regression

<table>
<thead>
<tr>
<th></th>
<th>∆CoVaR_{BAN} (1)</th>
<th>∆CoVaR_{INS} (2)</th>
<th>∆CoVaR_{NoFin} (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life²</td>
<td>0.431**</td>
<td>0.484**</td>
<td>0.577**</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.032)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Life</td>
<td>−0.468**</td>
<td>−0.536**</td>
<td>−0.614***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.017)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.574***</td>
<td>0.569***</td>
<td>0.525***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Leverage</td>
<td>−0.011</td>
<td>−0.005</td>
<td>−0.031</td>
</tr>
<tr>
<td></td>
<td>(0.740)</td>
<td>(0.867)</td>
<td>(0.242)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>0.012</td>
<td>0.046*</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>(0.728)</td>
<td>(0.052)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>−0.038</td>
<td>−0.007</td>
<td>−0.057</td>
</tr>
<tr>
<td></td>
<td>(0.500)</td>
<td>(0.904)</td>
<td>(0.409)</td>
</tr>
<tr>
<td>RoI</td>
<td>0.044</td>
<td>0.036</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>(0.336)</td>
<td>(0.459)</td>
<td>(0.163)</td>
</tr>
<tr>
<td>RoE</td>
<td>−0.028</td>
<td>0.010</td>
<td>−0.002</td>
</tr>
<tr>
<td></td>
<td>(0.396)</td>
<td>(0.739)</td>
<td>(0.962)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Geo Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>768</td>
<td>768</td>
<td>768</td>
</tr>
<tr>
<td>R²</td>
<td>0.732</td>
<td>0.720</td>
<td>0.700</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.721</td>
<td>0.709</td>
<td>0.687</td>
</tr>
</tbody>
</table>

NOTES: *p<0.1; **p<0.05; ***p<0.01
The table shows the results of the Ordinary Least Squares (OLS) panel regression on the model given by Equation 6 for the baseline sample of 68 international insurers from 2000 to 2020. Variable definitions and data sources are provided in Appendix A.3. All panel regressions are estimated with year and geographic fixed effects, as well as clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1. P-values are reported in parentheses. ∆CoVaR is given for the CoVaR estimates regarding the BAN, INS and NoFin.
The results show that business diversification between life and non-life insurance can have an economic significant impact on the insurer’s contribution to systemic risk. Monoline non-life insurers (Life = 0) reduce, on average, their contribution to systemic risk in the BAN, INS, and NoFin by 0.47, 0.54, and 0.61 standard deviations, respectively, for an increase in the life insurance business allocation by 1 standard deviation. Monoline life insurers (Life = 1) reduce, on average, their contribution to systemic risk in the BAN, INS, and NoFin by 0.14, 0.15, and 0.21 standard deviations, respectively, for a reduction in the life insurance business allocation by 1 standard deviation. Hence, systemic risk due to financial contagion from an insurer’s financial distress is reduced more strongly if non-life insurers start to engage in the life insurance business than vice versa, which is in line with Section 2.1, suggesting a less volatile life insurance business compared to non-life insurance.

Moreover, large insurers are expected to cause significantly higher financial losses to the BAN, INS, and NoFin, but leverage does not have a significant impact on an insurer’s systemic risk contribution, which is in line with Weiß and Mühlnickel (2014). Non-core activities seem to increase systemic risk in the INS but not regarding the BAN and NoFin. The effect of non-core activities suggests a stronger link regarding non-underwriting related activities like CDS transactions within the INS than between insurers and banks. For differences in the insurer’s underwriting portfolios (net claims ratio) and the operating profitability (RoI, RoE), no significant effects are found. In particular, the magnitude of the effects of an insurer’s business diversification and size on systemic risk in the real economy approximated by the NoFin is interesting. It underlines that insurers can propagate shocks directly to the real economy without going through the financial system. In that regard, the literature suggests that the insurer’s direct systemic link to the real economy is particularly driven by two channels: 1) a (short-term) lack of insurance coverage, which was a substantial systemic risk source in the cases of the two insurers the AIG (2007–2009) and HIH (2001); and 2) reduced funding of firms in the real economy (BoE, 2015a; European Systemic Risk Board (ESRB), 2015; FSOC, 2013b; Bailey, 2003).

The significantly quadratic relation between systemic risk and the life insurance business ratio yields the potential for insurers to minimize their systemic risk contribution. The first order condition of the regression model in Equation 6 regarding the life insurance business ratio yields a systemic risk minimizing business allocation given by \(\alpha^* = -\beta_2 / 2\beta_1 \), which is a minimum due to the second order condition with \(\hat{\beta}_1 > 0 \) and \(\hat{\beta}_2 < 0 \). Table 4 shows the systemic risk minimizing life insurance business allocations regarding the INS, BAN and NoFin, which are consistently larger than 50% life insurance. This finding supports Hypothesis II, suggesting from a theoretical portfolio perspective that an overweight to the less volatile life insurance business is necessary to minimize financial contagion risk that could potentially result in systemic risk.

8. Due to the scaling of the regression parameters, the marginal effects are expressed in terms of standard deviations. The marginal effect of the life business ratio can be expressed as: \(\Delta Y = (2\hat{\beta}_1 \text{Life} + \hat{\beta}_2) \Delta \text{Life} \), with \(\Delta Y \) in standard deviations of \(Y \) and \(\Delta \text{Life} \) in standard deviations of the life insurance business ratio. Hence, for Life = 0: \(\Delta Y = \hat{\beta}_2 \).

9. A 1 Std. dev. decrease in the life business ratio results in a change of the life allocation from \(L = 1 \) to \(L = 0.71 \), which corresponds to \(\Delta Y = - (2\hat{\beta}_1 0.71 + \hat{\beta}_2) \Delta \text{Life} \).
risk. The regression analysis suggests that insurers can, on average, minimize their contribution to systemic risk in the banking, insurance and non-financial sector by seeking a life business allocation around 54%.

Table 4: Systemic Risk Minimizing Life Insurance Business Allocation α*

<table>
<thead>
<tr>
<th></th>
<th>BAN</th>
<th>INS</th>
<th>NoFin</th>
</tr>
</thead>
<tbody>
<tr>
<td>α*</td>
<td>0.54</td>
<td>0.55</td>
<td>0.53</td>
</tr>
</tbody>
</table>

The table shows the average insurer’s systemic risk minimizing life insurance business allocations α* based on the baseline panel regression model and coefficients given in Table 3 regarding the BAN, INS, and NoFin.

Regional differences in the characteristics of insurance markets (e.g., the maturity of insurance markets or the economic importance of life or non-life insurance in certain regions) might lead to differences in the systemic risk minimizing allocation of the insurance business. Table 5 shows the systemic risk minimizing parameters for the insurance business allocation based on different splits of the insurer sample. The regional-specific analysis underlines the significant u-shaped relation between the diversification of insurance business lines in terms of life and non-life insurance and systemic risk. In each insurance market, monoline insurers—i.e., pure life or pure non-life insurers—are associated with higher levels of systemic risk than multiline insurers active in both insurance lines. Consistent with the findings of the model-based analysis in Section 2.2, a slight overweight of the business ratio towards life insurance is minimizing systemic risk. Given that one standard deviation of the life business allocation in the sample corresponds to a change of 29 percentage points (see Table 2); the relatively small differences in the systemic risk minimizing business allocations across the different insurance markets seem to be economically negligible.

Table 5: Regional Systemic Risk Minimizing Insurance Business Allocation α*

<table>
<thead>
<tr>
<th>Region</th>
<th>BAN</th>
<th>INS</th>
<th>NoFin</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>0.51</td>
<td>0.49</td>
<td>0.50</td>
</tr>
<tr>
<td>Europe</td>
<td>0.58</td>
<td>0.61</td>
<td>0.58</td>
</tr>
<tr>
<td>Mature Markets</td>
<td>0.53</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Emerging Markets</td>
<td>0.57</td>
<td>0.56</td>
<td>0.54</td>
</tr>
</tbody>
</table>

The table shows the average insurer’s systemic risk minimizing life insurance business allocations α* based on the baseline panel regression model and coefficients given in Tables 15 to 18 in the Appendix regarding the BAN, INS, and NoFin. North America refers to the insurers in the sample from the U.S. and Canada, Europe refers to the insurers from Europe, Mature Markets refers to the insurers from North America and Europe, and Emerging Markets refers to the insurers from Asia-Pacific and Africa.

4.2 Robustness Checks

Appendix A.5 comprises the results of several robustness checks. Table 19 contains the correlation coefficients of the explanatory variables, showing only weak correlations...
across the variables. In order to lower the potential for endogeneity in terms of reverse causality between the insurer’s systemic risk contribution and the insurer’s contemporaneous business allocation between life and non-life insurance, the explanatory variables in the baseline regression are lagged by one year (Bierth et al., 2015; Weiß and Mühlnickel, 2014). As findings by Zimmer et al. (2018), Phillips et al. (1998), and Sommer (1996) show, policyholders pay less for insurance if the insurer is subject to higher distress risk. The resulting insolvency penalty would constitute a strong monetary incentive for insurers in the sample to become more diversified to reduce distress risk. However, the insurer’s business allocation in the sample is relatively persistent over time, suggesting that the level of distress risk, and hence the resulting level of financial contagion and systemic risk, does not play a major role for the insurer’s decision to diversify its insurance business.

Moreover, several different model specifications are tested. Specifying an insurer’s size through total liabilities (see Table 20) and specifying leverage through a more bank-oriented definition in terms of the debt-to-asset ratio (see Table 21) support the results of the baseline regression. Including pure monoline life and non-life insurers in the sample reduces the significance in the effects of the explanatory variables in the baseline regression model as expected (see Table 22). These monoline insurers do not change their business model over time and therefore do not provide sufficient variation in the life insurance business ratio that can be used for estimating the marginal effect of the diversification of insurance business lines on systemic risk. However, to challenge the role of insurance business diversification for systemic risk, as suggested by the baseline regression analysis, a binary dummy variable is introduced, indicating a value of 0 for undiversified life or non-life insurers and a value of 1 for multiline insurers diversifying across both insurance lines. First, a t-test on the equality of ∆CoVaR mean values between undiversified and diversified insurers is conducted (see Table 23). The results show that diversified insurers contribute, on average, significantly less to systemic risk than undiversified insurers. Second, a panel regression with the diversification dummy variable instead of the life insurance business ratio is conducted (see Table 6). The effect of the dummy variable is significantly negative, showing that diversified insurers, on average, are less associated with systemic risk in the BAN, INS, and NoFin than undiversified insurers. The result underlines the outcome of the baseline panel regression on the marginal impact of the diversification of insurance business lines on an insurer’s contribution to systemic risk, indicating that insurers can, on average, significantly reduce systemic risk through business diversification.

Table 6: Robustness Check with Diversification Dummy

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>ΔCoVaR_{BAN} (1)</th>
<th>ΔCoVaR_{INS} (2)</th>
<th>ΔCoVaR_{NoFin} (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversification</td>
<td>−0.089** (0.032)</td>
<td>−0.087* (0.075)</td>
<td>−0.103** (0.033)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.526*** (0.000)</td>
<td>0.563*** (0.000)</td>
<td>0.543*** (0.000)</td>
</tr>
</tbody>
</table>
Leverage -0.005 0.003 -0.034
(0.889) (0.924) (0.331)
Non-Core Activities -0.027 0.010 0.013
(0.488) (0.753) (0.754)
Net-Claims Ratio 0.101 0.006 -0.038
(0.715) (0.828) (0.305)
RoI -0.018 -0.015 0.022
(0.568) (0.616) (0.566)
RoE 0.028 0.036 0.015
(0.284) (0.126) (0.544)

Year Fixed Effects Y Y Y
Geo Fixed Effects Y Y Y
Clustered SE Y Y Y
Observations 1,722 1,722 1,722
R2 0.660 0.672 0.615
Adjusted R2 0.654 0.667 0.609

NOTES: *p<0.1; **p<0.05; ***p<0.01
The table shows the results of the baseline panel regression from 2000 to 2020 with a dummy variable indicating an insurer’s diversification extent. The dummy variable is denoted by Diversification with value 0 for economically undiversified life or non-life insurers (at least 85% premium income from life or non-life insurance) and with value 1 for diversified insurers. Variable definitions, data sources, and insurer samples are provided in Table 9 and Table 14. Regressions are estimated with year and geographic fixed effects, as well as clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1, P-values given in parentheses. ∆CoVaR is given for the BAN, INS, and NoFin.

4.3 Policy Implications
The theoretical and empirical findings suggest that monoline life and monoline non-life insurers contribute, on average, most to systemic risk, while diversified multiline insurers with an average allocation in the range of 54% life insurance minimize the adverse financial consequences of their distress to other institutions. For macroprudential insurance regulation, the findings suggest that undiversified monoline insurers should be monitored more closely than diversified multiline insurers. The extent of an insurer’s business diversification could serve as an additional indicator for assessing the systemic relevance of insurers and help to allocate the supervisor’s monitoring resources more precisely. It could be included in the current indicator-based model used by the IAIS for the Individual Insurer Monitoring exercise as part of the Global Monitoring Exercise within the IAIS’s Holistic Framework for Systemic Risk in the Insurance Sector (IAIS, 2021). Moreover, the NAIC is developing a macroprudential risk assessment system in 2022 (NAIC, 2022). By means of an indicator-based quantitative review, the NAIC is planning to assess and monitor macroprudential risk exposures of the U.S. insurance market and particularly individual insurers on a biannual basis. Although the targeted indicators have not been published for public consultation in early 2022, the proposal indicates that insurers’ underwriting performance will be an assessment category for systemic risk. In that regard, the findings on the systemic risk minimizing business allocation between life and non-life insurance could be relevant for the further development of the NAIC’s macroprudential risk assessment system, for
instance by means of including a dedicated insurance diversification-related indicator in the quantitative review.

However, the question arises about whether all insurers should be exogenously incentivized to diversify their business regarding the systemic risk minimizing allocation level. Theoretical findings by Battiston et al. (2012), Allen et al. (2012), Ibragimov et al. (2011), Beale et al. (2011), and Wagner (2010) show that risk diversification can increase the risk of a collective distress if it coincides with substantial common exposures across institutions. The central assumption in these studies is that higher homogenization across institutions increases the correlation of their exposures. However, this assumption does not seem to be appropriate for the insurance sector, as insurance claims are typically uncorrelated as the central condition for a risk pooling effect. Moreover, claims related to catastrophic events (e.g., earthquakes) are correlated only among certain policyholders in the affected region, and the insured losses are mainly reinsured, which reduces the potential for common underwriting exposures across insurers. Therefore, considering the systemic risk reducing effect of the diversification of life and non-life insurance lines could be an effective extension in the macroprudential toolbox to assess and monitor systemic risk.

Furthermore, the results suggest that reducing systemic risk by means of business diversification is beneficial from a regulatory perspective, but it is unclear what cost effects for insurance markets might be associated with such an extent of business diversification. For example, when considering one monoline and one multiline insurer with the same size, then the monoline insurer typically has a higher level of diversification within its specific line of business, as it sells more similar insurance contracts to different policyholders compared to the multiline insurer. The larger risk pool, and hence higher economies of scale with respect to risk taking, would enable the monoline insurer to offer a smaller premium for the same level of default risk as the multiline company (Cummins, 1974). Thus, policyholders might benefit from lower prices for a given insurance contract charged by monoline insurers compared to multiline insurers of the same size. However, multiline insurers could benefit from economies of scope, as they diversify across insurance lines, which lowers their distress risk. Then, given the insolvency penalty on insurance markets (Zimmer et al., 2018; Phillips et al., 1998; Sommer, 1996), multiline insurers could charge higher premiums for insurance contracts due to lower insolvency risk compared to monoline insurers. Hence, the implications of insurance business diversification on insurance markets seem to be substantially characterized by a tradeoff between economies of scale—i.e., a higher degree of diversification within insurance lines—and economies of scope—i.e., a higher degree of diversification across insurance lines. Future research should study
this diversification tradeoff to assess the potential market implications that could arise from a systemic risk reducing level of insurance business diversification across insurers.10

5. Conclusion

This paper studies the influence of the diversification of insurance business lines between life and non-life insurance on the insurer’s contribution to systemic risk in terms of financial contagion; i.e., the spillover of losses from financially distressed insurers to other institutions. Evidence on the volatility and correlation of cash flows associated with life and non-life insurance suggest a financially stabilizing diversification potential for multiline insurers active in both insurance lines. Based on a theoretical portfolio model, it is shown that diversified multiline insurers can reduce financial contagion risk in terms of counterparty credit risk, which is an important channel for systemic risk. The model suggests a u-shaped relation between insurance business diversification in terms of life and non-life insurance and systemic risk; more specifically, it suggests a systemic risk minimizing insurance business allocation with an overweight to the less volatile life insurance business.

The empirical analysis based on a sample of 68 insurers from 2000 to 2020 tests the theoretical hypotheses. The insurer’s contribution to systemic risk is estimated with the ∆CoVaR based on i) the banking system, ii) the insurance system and iii) the non-financial system as representation of the real economy. The empirical results underline the u-shaped relation between the diversification of insurance business lines in terms of life and non-life insurance and systemic risk in terms of financial contagion. The results suggest that monoline life and monoline non-life insurers contribute, on average, more to systemic risk than diversified multiline insurers. More specifically, insurers with an insurance business allocation in the range of 54% life insurance minimize, on average, their contribution to systemic risk in terms of financial contagion.

For macroprudential insurance regulation, the findings suggest that undiversified monoline insurers should be monitored more closely than diversified multiline insurers. Since insurance business diversification between life and non-life insurance has not been considered so far by macroprudential insurance regulation regarding the IAIS’s Individual Insurer Monitoring, supervisors could use the insurer’s level of business diversification as an additional indicator for assessing the systemic relevance of insurers. The extension of the macroprudential toolbox in that regard could help to assess systemic risk stemming from financially distressed insurers and save regulatory costs by supporting supervisors in allocating their monitoring efforts more precisely.

10. Moreover, the insurance distribution system can influence to what extent insurers can realize a certain business allocation, like the systemic risk minimizing allocation. Insurers can generally more easily steer the overall business allocation through growing or shrinking the business volume of the short-term non-life insurance line compared to the long-term life insurance line, particularly in case of a common distribution system for both lines compared to a separate system. The literature provides little evidence of the influence of insurance distribution systems on the scope of diversification between life and non-life insurance. However, if the diversifying multiline insurer does not transform into a pure life or a pure non-life insurer, the u-shaped diversification effect between both lines materializes in lower levels of systemic risk. Future research could provide valuable insights by studying the influence of distribution systems on the scope of insurance business diversification, which could deliver practical implications for macroprudential insurance regulation regarding assessing diversification-related effects on systemic risk.
Appendix

A.1 Underwriting Cash Flows

Table 7 shows the data used for the cash flow analysis between life and non-life insurance in Section 2.1. All monoline life and monoline non-life insurers are selected from SNL Financial (S&P Global Market Intelligence) over the time period of 2005-2019. The sample is corrected for dead firms and all insurers for which underwriting-related cash flow data is not available over the full time period. After cleaning the sample, annual data is collected in U.S. dollars for a sample of 56 insurers, which consists of 42 non-life (P/C) insurers and 14 life (L/H) insurers. Table 8 shows the list of insurers used for the cash flow analysis.

Table 7: Variables and Data Sources for the Cash Flow Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/C Net Premiums Earned</td>
<td>The U.S. generally accepted accounting principles (GAAP) P/C insurance premiums earned, net of reinsurance. This variable is used to classify non-life insurance business.</td>
<td>SNL Key: 286130</td>
</tr>
<tr>
<td>L/H Net Premiums Earned</td>
<td>Life insurance and accident and health (A&H) premiums earned, net of reinsurance. This variable is used to classify life insurance business.</td>
<td>SNL Key: 286131</td>
</tr>
<tr>
<td>P/C Losses and Loss Adjustment Expenses (LAE)</td>
<td>Expenses of settling P/C insurance claims related to written policies, net of reinsurance. Expenses include those necessary for the indemnification of the insured, as well as those expenses incurred while investigating and settling claims.</td>
<td>SNL Key: 286142</td>
</tr>
<tr>
<td>L/H Total Claims and Policy Benefits</td>
<td>Policy claims and benefits incurred on L/H policies, plus any interest credited to policyholder accounts and policyholder dividends on life policies. For U.S. companies, this is collected as net. For European and Asia-Pacific companies, this can be collected as gross or net.</td>
<td>SNL Key: 286143</td>
</tr>
</tbody>
</table>

Table 8: Insurer Sample for the Cash Flow Analysis

<table>
<thead>
<tr>
<th>Entity Name</th>
<th>Entity ID (SNL)</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Aflac Incorporated</td>
<td>103316</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>2 Alleghany Corporation</td>
<td>103410</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>3 Ambac Financial Group, Inc.</td>
<td>103402</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>4 American Financial Group, Inc.</td>
<td>103424</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>5 AMERISAFE, Inc.</td>
<td>4041394</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>6 Ameritas Mutual Holding Company</td>
<td>4026711</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>7 Arch Capital Group Ltd.</td>
<td>103577</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>8 Argo Group International Holdings, Ltd.</td>
<td>103333</td>
<td>United States and Canada</td>
</tr>
<tr>
<td>9 Aspen Insurance Holdings Limited</td>
<td>4089391</td>
<td>United States and Canada</td>
</tr>
<tr>
<td></td>
<td>Company Name</td>
<td>CRD No</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>10</td>
<td>Assured Guaranty Ltd.</td>
<td>4090916</td>
</tr>
<tr>
<td>11</td>
<td>AXIS Capital Holdings Limited</td>
<td>4080716</td>
</tr>
<tr>
<td>12</td>
<td>Cincinnati Financial Corporation</td>
<td>103262</td>
</tr>
<tr>
<td>13</td>
<td>Citizens, Inc.</td>
<td>103263</td>
</tr>
<tr>
<td>14</td>
<td>CNO Financial Group, Inc.</td>
<td>4089422</td>
</tr>
<tr>
<td>15</td>
<td>Echelon Financial Holdings Inc.</td>
<td>4193774</td>
</tr>
<tr>
<td>16</td>
<td>Employers Holdings, Inc.</td>
<td>4142896</td>
</tr>
<tr>
<td>17</td>
<td>Factory Mutual Insurance Company</td>
<td>11489</td>
</tr>
<tr>
<td>18</td>
<td>Fairfax Financial Holdings Limited</td>
<td>4021790</td>
</tr>
<tr>
<td>19</td>
<td>FedNat Holding Company</td>
<td>4040584</td>
</tr>
<tr>
<td>20</td>
<td>Fidelity National Financial, Inc.</td>
<td>4107778</td>
</tr>
<tr>
<td>21</td>
<td>First American Financial Corporation</td>
<td>103412</td>
</tr>
<tr>
<td>22</td>
<td>Globe Life Inc.</td>
<td>103323</td>
</tr>
<tr>
<td>23</td>
<td>Hanover Insurance Group, Inc.</td>
<td>103541</td>
</tr>
<tr>
<td>24</td>
<td>Intact Financial Corporation</td>
<td>4109061</td>
</tr>
<tr>
<td>25</td>
<td>Investors Title Company</td>
<td>103413</td>
</tr>
<tr>
<td>26</td>
<td>Kansas City Life Insurance Company</td>
<td>103285</td>
</tr>
<tr>
<td>27</td>
<td>Loews Corporation</td>
<td>103455</td>
</tr>
<tr>
<td>28</td>
<td>Manulife Financial Corporation</td>
<td>4048408</td>
</tr>
<tr>
<td>29</td>
<td>Markel Corporation</td>
<td>4051039</td>
</tr>
<tr>
<td>30</td>
<td>MBIA Inc.</td>
<td>103405</td>
</tr>
<tr>
<td>31</td>
<td>Mercury General Corporation</td>
<td>103365</td>
</tr>
<tr>
<td>32</td>
<td>MGIC Investment Corporation</td>
<td>103406</td>
</tr>
<tr>
<td>33</td>
<td>National Life Group</td>
<td>4048602</td>
</tr>
<tr>
<td>34</td>
<td>New York Life Insurance Company</td>
<td>110248</td>
</tr>
<tr>
<td>35</td>
<td>Principal Financial Group, Inc.</td>
<td>110230</td>
</tr>
<tr>
<td>36</td>
<td>ProAssurance Corporation</td>
<td>4064418</td>
</tr>
<tr>
<td>37</td>
<td>Progressive Corporation</td>
<td>103383</td>
</tr>
<tr>
<td>38</td>
<td>Protective Insurance Corporation</td>
<td>103425</td>
</tr>
<tr>
<td>39</td>
<td>Prudential Financial, Inc.</td>
<td>4072932</td>
</tr>
<tr>
<td>40</td>
<td>Radian Group Inc.</td>
<td>103563</td>
</tr>
<tr>
<td>41</td>
<td>Reinsurance Group of America, Incorporated</td>
<td>103450</td>
</tr>
<tr>
<td>42</td>
<td>RenaissanceRe Holdings Ltd.</td>
<td>103554</td>
</tr>
<tr>
<td>43</td>
<td>RLI Corp.</td>
<td>103386</td>
</tr>
<tr>
<td>44</td>
<td>RSA Insurance Group Plc</td>
<td>4020890</td>
</tr>
<tr>
<td>45</td>
<td>Safety Insurance Group, Inc.</td>
<td>4074760</td>
</tr>
<tr>
<td>46</td>
<td>Selective Insurance Group, Inc.</td>
<td>103451</td>
</tr>
<tr>
<td>47</td>
<td>Stewart Information Services Corporation</td>
<td>103414</td>
</tr>
<tr>
<td>48</td>
<td>The Allstate Corp.</td>
<td>103247</td>
</tr>
<tr>
<td>49</td>
<td>Travelers Companies, Inc.</td>
<td>4055530</td>
</tr>
<tr>
<td>50</td>
<td>Unico American Corporation</td>
<td>103550</td>
</tr>
<tr>
<td>51</td>
<td>United Fire Group, Inc.</td>
<td>103396</td>
</tr>
<tr>
<td>52</td>
<td>Universal Insurance Holdings, Inc.</td>
<td>4040161</td>
</tr>
<tr>
<td>53</td>
<td>Unum Group</td>
<td>103324</td>
</tr>
</tbody>
</table>
A.2 The Counterparty’s Expected Loss

The total equity cash flow R of the insurance holding is given by:

$$R = \alpha R_L + (1 - \alpha) R_{NL}. \quad (7)$$

where R_L and R_{NL} denote the normally distributed equity cash flows generated by the life (L) and non-life (NL) insurance subsidiaries.

Since it is assumed for illustrative reasons that the equity cash flows from the life and non-life insurance business have a similar expectation, the holding’s expected total equity cash flow is independent from α. The first order condition of the counterparty’s expected loss (Equation 1) regarding the business allocation parameter α yields:

$$\frac{\partial EL}{\partial \alpha} = (D - \mu_R) \frac{\partial \Phi(z)}{\partial \alpha} + \frac{\partial \sigma_R}{\partial \alpha} \Phi'(z) + \sigma_R \frac{\partial \Phi'(z)}{\partial \alpha}$$

$$= (D - \mu_R) \Phi'(z) \frac{\partial z}{\partial \alpha} + \frac{1}{2\sigma_R} \frac{\partial \sigma_R^2}{\partial \alpha} \Phi'(z) - \sigma_R z \Phi'(z) \frac{\partial \sigma_R}{\partial \alpha} \frac{\partial z}{\partial \alpha}$$

$$= \frac{1}{2\sigma_R} \Phi'(z) \frac{\partial \sigma_R^2}{\partial \alpha} \quad (8)$$

Since $\sigma_R > 0$ and $\Phi'(z) > 0$, the critical point of the expected loss is given by the minimum variance allocation. The critical point yields a positive second order condition and a risk minimum for a sufficiently small correlation between both insurance lines, which is in line with the low correlation levels, as suggested in Section 2.1. The risk minimizing allocation is given by:

$$\frac{\partial \sigma_R^2}{\partial \alpha} = 0$$

$$\alpha^* = \frac{\sigma_{NL}^2 - \sigma_L \sigma_{NL} \rho}{\sigma_L^2 + \sigma_{NL}^2 - 2 \sigma_L \sigma_{NL} \rho} \quad (9)$$

Note: $z = \frac{D - \mu_R}{\sigma_R}, \quad \frac{\partial \sigma_R}{\partial \alpha} = \frac{\partial (\sigma_R^2)^{1/2}}{\partial \alpha} = \frac{1}{2\sigma_R} \frac{\partial \sigma_R^2}{\partial \alpha}, \quad \frac{\partial \Phi(z)}{\partial \alpha} = \Phi'(z) \frac{\partial z}{\partial \alpha}, \quad \frac{\partial \Phi'(z)}{\partial \alpha} = -z \Phi'(z) \frac{\partial z}{\partial \alpha}$
A.3 Variables and Data for the Regression Analysis

Table 9 provides the overview of the variables and data for the baseline panel regression.

Table 9: Variables and Data Sources for the Baseline Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆CoVaR</td>
<td>Difference between a system’s VaR conditional on a particular insurer being in distress at its 5% daily return quantile and the system’s VaR conditional on that insurer’s median state. Annual mean values of the weekly estimates in a given year are taken as the dependent variable in the regression analysis.</td>
<td>Datastream, SNL Financial (S&P Global Market Intelligence)</td>
</tr>
<tr>
<td>Systems considered</td>
<td>BAN: MSCI World Banks</td>
<td>Datastream</td>
</tr>
<tr>
<td></td>
<td>INS: Global Insurance System</td>
<td>Own calculation</td>
</tr>
<tr>
<td></td>
<td>NoFin: Datastream World Non-Financial Index</td>
<td>Datastream</td>
</tr>
<tr>
<td>Explanatory variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Insurance Ratio</td>
<td>Ratio of net premiums earned in L/H business to total net premiums earned (life and non-life). It is net of reinsurance.</td>
<td>SNL Key: 132544, 134652</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>Ratio of total net claims and benefits to total net premiums earned.</td>
<td>SNL Key: 245623, 134652</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>Ratio of total liabilities to total insurance reserves.</td>
<td>SNL Key: 263009, 263004</td>
</tr>
<tr>
<td>Leverage</td>
<td>Ratio of total net premiums earned to policyholder surplus as the difference between total assets and total liabilities.</td>
<td>SNL Key: 132541, 132544, 132264, 263009</td>
</tr>
<tr>
<td>Debt-to-Asset Ratio</td>
<td>Ratio of total debt to total assets.</td>
<td>SNL Key: 263008, 132264</td>
</tr>
<tr>
<td>Total Assets</td>
<td>Natural logarithm of total assets.</td>
<td>SNL Key: 132264</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>Natural logarithm of total liabilities.</td>
<td>SNL Key: 263009</td>
</tr>
<tr>
<td>RoI</td>
<td>Ratio of absolute investment income to total assets.</td>
<td>SNL Key: 245211, 132264</td>
</tr>
<tr>
<td>RoE</td>
<td>Return on Equity.</td>
<td>SNL Key: 329316</td>
</tr>
</tbody>
</table>

Data is mainly collected from SNL Financial (S&P Global Market Intelligence). Missing data is added from Datastream by means of ISIN matches. Data is collected in U.S. dollars.

Table 10 shows the insurer sample for the baseline panel regression, and Table 11 shows the geographic distribution of the insurers.

Table 10: List of Insurers in the Baseline Regression Sample from 2000–2020

<table>
<thead>
<tr>
<th>Name</th>
<th>ISIN</th>
<th>Name</th>
<th>ISIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Aegon N.V.</td>
<td>NL0000303709</td>
<td>35 Loews Corporation</td>
<td>US5404241086</td>
</tr>
<tr>
<td>2 Allstate Corporation</td>
<td>US0200021014</td>
<td>36 Maiden Holdings Ltd.</td>
<td>BMGS5753U1128</td>
</tr>
<tr>
<td>3 Assicurazioni Generali S.p.A.</td>
<td>IT0000062072</td>
<td>37 Manulife Financial Corporation</td>
<td>CA56501R1064</td>
</tr>
<tr>
<td>#</td>
<td>Company Name</td>
<td>CUSIP</td>
<td>Company Name</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Atlantic American Corporation</td>
<td>US0482091008</td>
<td>MetLife, Inc.</td>
</tr>
<tr>
<td>5</td>
<td>Aviva plc</td>
<td>GB0002162385</td>
<td>Mutual Benefits Assurance plc</td>
</tr>
<tr>
<td>6</td>
<td>AvivaSA Emeklilik ve Hayat AS</td>
<td>TRECUE00018</td>
<td>National Reinsurance Corporation of the Philippines</td>
</tr>
<tr>
<td>7</td>
<td>AXA SA</td>
<td>FR0001206286</td>
<td>Niger Insurance plc</td>
</tr>
<tr>
<td>8</td>
<td>Axis Capital Holdings Limited</td>
<td>BMG0692U1099</td>
<td>NN Group N.V.</td>
</tr>
<tr>
<td>9</td>
<td>Bâloise Holding AG</td>
<td>CH0012410517</td>
<td>Ping An Insurance (Group) Company of China, Ltd.</td>
</tr>
<tr>
<td>10</td>
<td>Baoviet Holdings</td>
<td>VN000000BVH3</td>
<td>Pozavarovalnica Sava d.d.</td>
</tr>
<tr>
<td>11</td>
<td>Beazley plc</td>
<td>GB00BYQ0JC66</td>
<td>PT Panin Insurance</td>
</tr>
<tr>
<td>12</td>
<td>Britam Holdings plc</td>
<td>KE2000002192</td>
<td>PZU Group</td>
</tr>
<tr>
<td>13</td>
<td>Central Reinsurance Corporation</td>
<td>TW0002851003</td>
<td>Rand Merchant Investment Holdings Limited</td>
</tr>
<tr>
<td>14</td>
<td>China Pacific Insurance Group Co., Ltd.</td>
<td>CNE1000008M8</td>
<td>RheinLand Holding AG</td>
</tr>
<tr>
<td>15</td>
<td>China Reinsurance (Group) Corporation</td>
<td>CNE100002342</td>
<td>Royal Exchange plc</td>
</tr>
<tr>
<td>16</td>
<td>Chubb Limited</td>
<td>CH0044328745</td>
<td>Sampo OYJ</td>
</tr>
<tr>
<td>17</td>
<td>Cincinnati Financial Corporation</td>
<td>US1720621010</td>
<td>Samsung Fire & Marine Insurance Co., Ltd.</td>
</tr>
<tr>
<td>18</td>
<td>Citizens, Inc.</td>
<td>US1747401008</td>
<td>Scor SE</td>
</tr>
<tr>
<td>19</td>
<td>DB Insurance Co., Ltd.</td>
<td>KR7005830005</td>
<td>Società Cattolica di Assicurazione S.p.A.</td>
</tr>
<tr>
<td>20</td>
<td>Discovery Holdings Ltd.</td>
<td>ZAE000022331</td>
<td>Société Tunisienne d'Assurances et de Réassurances</td>
</tr>
<tr>
<td>21</td>
<td>E-L Financial Corporation Limited</td>
<td>CA2685751075</td>
<td>Storebrand ASA</td>
</tr>
<tr>
<td>22</td>
<td>Enstar Group Ltd.</td>
<td>BMG3075P1014</td>
<td>Suncorp Group Ltd.</td>
</tr>
<tr>
<td>23</td>
<td>European Reliance General Insurance</td>
<td>GRS277023008</td>
<td>Swiss Life Holding AG</td>
</tr>
<tr>
<td>24</td>
<td>Genworth Financial, Inc.</td>
<td>US37247D1063</td>
<td>Swiss Re AG</td>
</tr>
<tr>
<td>25</td>
<td>Grupo Catalana Occidente SA</td>
<td>ES0116920333</td>
<td>The People's Insurance Company (Group) of China Ltd.</td>
</tr>
<tr>
<td>26</td>
<td>Hanover Insurance Group</td>
<td>US4108671052</td>
<td>Tiptree Financial A</td>
</tr>
<tr>
<td>27</td>
<td>Hartford Financial Services Group, Inc.</td>
<td>US4165151048</td>
<td>Topdanmark A/S</td>
</tr>
<tr>
<td>28</td>
<td>Helvetia Holding AG</td>
<td>CH0466642201</td>
<td>UNIQA Insurance Group AG</td>
</tr>
<tr>
<td>29</td>
<td>Heungkuk Fire & Marine Insurance Co., Ltd.</td>
<td>KR7000540005</td>
<td>United Fire Group Inc.</td>
</tr>
<tr>
<td>30</td>
<td>Horace Mann Educators Co.,</td>
<td>US4403271046</td>
<td>Vaudoise Assurances Holding SA</td>
</tr>
<tr>
<td>31</td>
<td>Jubilee Holdings Ltd.</td>
<td>KE0000000273</td>
<td>Wafa Assurance SA</td>
</tr>
<tr>
<td>32</td>
<td>Kemper Corporation</td>
<td>US4884011002</td>
<td>Wüstenrot & Württembergische AG</td>
</tr>
</tbody>
</table>
Table 11: Geographic Distribution of Insurers in the Baseline Regression Sample

<table>
<thead>
<tr>
<th>Geography</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>39.7%</td>
</tr>
<tr>
<td>United States and Canada</td>
<td>26.5%</td>
</tr>
<tr>
<td>Asia-Pacific</td>
<td>19.1%</td>
</tr>
<tr>
<td>Africa</td>
<td>14.7%</td>
</tr>
</tbody>
</table>

A.4 Estimation of Systemic Risk

The ΔCoVaR by Adrian and Brunnermeier (2016) is defined as the system’s increase in tail risk when the insurer under consideration becomes financially distressed compared to the insurer’s median state. The estimation of the ΔCoVaR capturing the time-varying tail dependence between the insurer and the system is based on quantile regressions using the state variables as given in Table 12. Daily observations of insurer’s stock returns are collapsed into weekly frequency. The estimation of the dependence of insurer i’s return with the state variables and the systems is conducted on the total available time horizon from January 2000 to December 2020. The result is a weekly estimate for the ΔCoVaR. The mean value of the weekly estimates in a given year is then used in the panel regression for the insurer’s yearly systemic risk contribution.

Table 12: State Variables for ΔCoVaR Estimation

<table>
<thead>
<tr>
<th>State Variable</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Three-Month Treasury Bill Rate</td>
<td>Weekly data, FRB H15 U.S.</td>
</tr>
<tr>
<td>U.S. Treasury Yield Spread</td>
<td>Weekly data, FRB H15</td>
</tr>
<tr>
<td>(10 Year - Three Month)</td>
<td></td>
</tr>
<tr>
<td>Short-Term TED Spread</td>
<td>Weekly spread between Three-month London Interbank Offered Rate, (LIBOR) and Three-Month Treasury Bill rate, Federal Reserve Economic, Data (FRED)</td>
</tr>
<tr>
<td>Credit Spread</td>
<td>Weekly change in credit spread between Moody’s Investors Service (Moody’s) Baa-rated bonds and 10-year Treasury rate, FRED</td>
</tr>
<tr>
<td>Standard & Poor’s 500 Index (S&P 500)</td>
<td>Weekly return, Datastream</td>
</tr>
<tr>
<td>Volatility Index (VIX)</td>
<td>Weekly data, FRED</td>
</tr>
</tbody>
</table>

Details on the estimation: Adrian and Brunnermeier (2016) and Bisias et al. (2012).

1. The Global Banking System (BAN)

The BAN is approximated by the MSCI World Banks Index, which is a public market index containing stocks from 71 banks across 23 markets.
2. The Global Insurance System (INS)

The INS is represented by a constructed index of 159 international insurers (see Table 14, explained in Section 3.1). For each insurer under consideration for the ΔCoVaR estimation, a separate return index of the insurance system is calculated based on a market capitalization weighted return index of all other insurers in the system. Hence, it prevents a double counting of the specific insurer’s return and a constructed correlation between the insurer’s tail risk and the system’s tail risk.

The index return series is calculated like Bisias et al. (2012) as follows: 1) MC\(_{t,i}\) stands for the market capitalization of insurer \(i\) at day \(t\) in U.S. dollars; and 2) \(P_t\) denotes insurer \(i\)'s stock price in U.S. dollars. The system is given by a subset \(S \subseteq \{1, \ldots, N\}\), where \(N\) is the number of all institutions in the system. Then, the return of the index for system \(S\), excluding insurer \(i \in \{1, \ldots, N\}\) at day \(t\), is given as the market capitalization weighted average of the remaining institutions’ returns from the time period \(t - 1\) to \(t\):

\[
 r_{t|S|i} = \frac{\sum_{j \in S \setminus \{i\}} MC_{t-1,j} \left(\frac{P_t^j}{P_{t-1}^j} - 1 \right)}{\sum_{j \in S \setminus \{i\}} MC_{t-1,j}}
\]

3. The Global Non-Financial System (NoFin)

The NoFin is represented by the Datastream World Non-Financial Index, consisting of 5277 firms from a broad spectrum of industrial sectors and geographical regions. Table 13 gives an overview of the geographic and sectoral distribution of the index.

<table>
<thead>
<tr>
<th>Geographic Distribution</th>
<th>Sectoral Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Fraction</td>
</tr>
<tr>
<td>Japan</td>
<td>16%</td>
</tr>
<tr>
<td>U.S.</td>
<td>15%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>5%</td>
</tr>
<tr>
<td>France</td>
<td>4%</td>
</tr>
<tr>
<td>Germany</td>
<td>4%</td>
</tr>
<tr>
<td>Canada</td>
<td>4%</td>
</tr>
<tr>
<td>India</td>
<td>3%</td>
</tr>
<tr>
<td>Italy</td>
<td>2%</td>
</tr>
<tr>
<td>Australia</td>
<td>2%</td>
</tr>
</tbody>
</table>

Relative weights of countries and industrial sectors in the Datastream World Non-Financial Index as of January 2021.

<p>	Table 14: List of Insurers Representing the INS for the Estimation of ΔCoVaR
Name	ISIN
Admiral Group Plc	GB00B02J6398
Aegon N.V.	NL0000303709
Aflac Inc.	US0010551028
AIA Group Ltd.	HK0000069689
<table>
<thead>
<tr>
<th>28</th>
<th>Journal of Insurance Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Alleghany Corporation</td>
<td>US0171751003</td>
</tr>
<tr>
<td>6 Allstate Corporation</td>
<td>US0200201014</td>
</tr>
<tr>
<td>7 Ambac Financial Group, Inc.</td>
<td>US0231398845</td>
</tr>
<tr>
<td>8 AMERISAFE, Inc.</td>
<td>US03071H1005</td>
</tr>
<tr>
<td>9 Anicim Holdings, Inc.</td>
<td>JP3122440005</td>
</tr>
<tr>
<td>10 Arch Capital Group Ltd.</td>
<td>BMG0450A1053</td>
</tr>
<tr>
<td>11 Assicurazioni Generali S.p.A.</td>
<td>IT0000062072</td>
</tr>
<tr>
<td>12 Assurant, Inc.</td>
<td>US04621X1081</td>
</tr>
<tr>
<td>13 Assured Guaranty Ltd.</td>
<td>BMG0585R1060</td>
</tr>
<tr>
<td>14 Atlantic American Corporation</td>
<td>US0482091008</td>
</tr>
<tr>
<td>15 Atlantic Insurance Company Public Ltd.</td>
<td>CY0006010314</td>
</tr>
<tr>
<td>16 Aviva plc</td>
<td>GB0002162385</td>
</tr>
<tr>
<td>17 AvivaSA Emekilik ve Hayat AS</td>
<td>TRECUE000018</td>
</tr>
<tr>
<td>18 AXA SA</td>
<td>FR0000120628</td>
</tr>
<tr>
<td>19 Axis Capital Holdings Limited</td>
<td>BMG0692U1099</td>
</tr>
<tr>
<td>20 Bâloise Holding AG</td>
<td>CH0012410517</td>
</tr>
<tr>
<td>21 Bangkok Insurance Public Company Limited</td>
<td>TH0042010007</td>
</tr>
<tr>
<td>22 Bangkok Life Assurance Public Company Limited</td>
<td>TH1016010007</td>
</tr>
<tr>
<td>23 BaoMinh Insurance Corp</td>
<td>VN000000BM10</td>
</tr>
<tr>
<td>24 Baoviet Holdings</td>
<td>VN000000BVH3</td>
</tr>
<tr>
<td>25 Beazley plc</td>
<td>GB008YQ0JC67</td>
</tr>
<tr>
<td>26 Britam Holdings plc</td>
<td>KE2000002196</td>
</tr>
<tr>
<td>27 Central Reinsurance Corporation</td>
<td>TW0002851003</td>
</tr>
<tr>
<td>28 Chesnara plc</td>
<td>GB008000F3T0</td>
</tr>
<tr>
<td>29 China Pacific Insurance Group Co., Ltd.</td>
<td>CNE1000008M8</td>
</tr>
<tr>
<td>30 China Reinsurance (Group) Corporation</td>
<td>CNE100002342</td>
</tr>
<tr>
<td>31 Chubb Limited</td>
<td>CH0044328745</td>
</tr>
<tr>
<td>32 Cincinnati Financial Corporation</td>
<td>US1720621010</td>
</tr>
<tr>
<td>33 Citizens, Inc.</td>
<td>US1747401008</td>
</tr>
<tr>
<td>34 Coface SA</td>
<td>FR00010667147</td>
</tr>
<tr>
<td>35 DB Insurance Co., Ltd.</td>
<td>KR7005830005</td>
</tr>
<tr>
<td>36 Dhipaya Insurance Public Company Limited</td>
<td>TH0588010204</td>
</tr>
<tr>
<td>37 Direct Line Insurance Group plc</td>
<td>GB008Y9D0Y18</td>
</tr>
<tr>
<td>No.</td>
<td>Company Name</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>38</td>
<td>Discovery Holdings Ltd.</td>
</tr>
<tr>
<td>39</td>
<td>E-L Financial Corporation Limited</td>
</tr>
<tr>
<td>40</td>
<td>Employers Holdings, Inc.</td>
</tr>
<tr>
<td>41</td>
<td>Enstar Group Ltd.</td>
</tr>
<tr>
<td>42</td>
<td>Essent Group Ltd.</td>
</tr>
<tr>
<td>43</td>
<td>European Reliance General Insurance</td>
</tr>
<tr>
<td>44</td>
<td>Everest Re Group Ltd.</td>
</tr>
<tr>
<td>45</td>
<td>Fairfax Financial Holdings Ltd.</td>
</tr>
<tr>
<td>46</td>
<td>FBD Holdings plc</td>
</tr>
<tr>
<td>47</td>
<td>Federated National Holding Company</td>
</tr>
<tr>
<td>49</td>
<td>First Acceptance Insurance Company, Inc.</td>
</tr>
<tr>
<td>50</td>
<td>First American Financial Corporation</td>
</tr>
<tr>
<td>51</td>
<td>First Insurance Co., Ltd.</td>
</tr>
<tr>
<td>52</td>
<td>Genworth Financial, Inc.</td>
</tr>
<tr>
<td>53</td>
<td>Greenlight Capital RE Ltd.</td>
</tr>
<tr>
<td>54</td>
<td>Grupo Catalana Occidente SA</td>
</tr>
<tr>
<td>55</td>
<td>Hanover Insurance Group</td>
</tr>
<tr>
<td>56</td>
<td>Hanwha Life Insurance Co., Ltd.</td>
</tr>
<tr>
<td>57</td>
<td>Hartford Financial Services Group, Inc.</td>
</tr>
<tr>
<td>58</td>
<td>HCI Group, Inc.</td>
</tr>
<tr>
<td>59</td>
<td>Helios Underwriting plc</td>
</tr>
<tr>
<td>60</td>
<td>Helvetia Holding AG</td>
</tr>
<tr>
<td>61</td>
<td>Heritage Insurance Holdings, Inc.</td>
</tr>
<tr>
<td>62</td>
<td>Heungkuk Fire & Marine Insurance Co., Ltd.</td>
</tr>
<tr>
<td>63</td>
<td>Hiscox Ltd.</td>
</tr>
<tr>
<td>64</td>
<td>Horace Mann Educators Co.,</td>
</tr>
<tr>
<td>66</td>
<td>Independence Holding Co.</td>
</tr>
</tbody>
</table>
The following tables show the results of the panel regressions on the model given by Equation 6 from 2000 to 2020 based on different geographic splits of the insurer sample: North America (U.S. and Canada), Europe, Mature Markets (North America and Europe), and Emerging Markets (Asia-Pacific and Africa). ∆CoVaR is given for the BAN, INS, and NoFin.

Table 15: OLS Panel Regression: North America

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>ΔCoVaRBAN (1)</th>
<th>ΔCoVaRINS (2)</th>
<th>ΔCoVaRNoFin (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life²</td>
<td>0.839*</td>
<td>1.201**</td>
<td>0.881*</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.022)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Life</td>
<td>−0.861*</td>
<td>−1.170**</td>
<td>−0.885*</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.036)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.650***</td>
<td>0.638***</td>
<td>0.469***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Leverage</td>
<td>−0.187*</td>
<td>−0.127</td>
<td>−0.107</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.229)</td>
<td>(0.235)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>0.087</td>
<td>0.114</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>(0.344)</td>
<td>(0.256)</td>
<td>(0.124)</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>0.044</td>
<td>0.048</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.830)</td>
<td>(0.845)</td>
<td>(0.721)</td>
</tr>
</tbody>
</table>
Table 16: OLS Panel Regression: Europe

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>$\Delta \text{CoVaR}_{\text{BAN}}^{(1)}$</th>
<th>$\Delta \text{CoVaR}_{\text{INS}}^{(2)}$</th>
<th>$\Delta \text{CoVaR}_{\text{NoFin}}^{(3)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life2</td>
<td>0.653* (0.075)</td>
<td>0.622* (0.072)</td>
<td>0.605* (0.084)</td>
</tr>
<tr>
<td>Life</td>
<td>-0.755* (0.057)</td>
<td>-0.753* (0.051)</td>
<td>-0.707* (0.068)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.574*** (0.000)</td>
<td>0.602*** (0.000)</td>
<td>0.516*** (0.000)</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.148 (0.135)</td>
<td>0.006 (0.939)</td>
<td>0.046 (0.555)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>-0.040 (0.366)</td>
<td>0.034 (0.471)</td>
<td>0.046 (0.228)</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>0.152 (0.200)</td>
<td>0.207* (0.056)</td>
<td>0.179 (0.141)</td>
</tr>
<tr>
<td>RoI</td>
<td>-0.091 (0.455)</td>
<td>-0.178 (0.166)</td>
<td>-0.135 (0.270)</td>
</tr>
<tr>
<td>RoE</td>
<td>-0.064 (0.340)</td>
<td>0.037 (0.636)</td>
<td>-0.063 (0.363)</td>
</tr>
</tbody>
</table>

NOTES: *$p<0.1$; **$p<0.05$; ***$p<0.01$

Regressions are estimated with year and geographic fixed effects, as well as clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1, P-values given in parentheses.
Table 17: OLS Panel Regression: Mature Markets

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>ΔCoVaR_BAN (1)</th>
<th>ΔCoVaR_INS (2)</th>
<th>ΔCoVaR_NoFin (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life²</td>
<td>0.587* (0.052)</td>
<td>0.693** (0.034)</td>
<td>0.546* (0.074)</td>
</tr>
<tr>
<td>Life</td>
<td>−0.616* (0.066)</td>
<td>−0.706** (0.043)</td>
<td>−0.556* (0.084)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.536*** (0.000)</td>
<td>0.546*** (0.000)</td>
<td>0.446*** (0.000)</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.064 (0.430)</td>
<td>−0.042 (0.530)</td>
<td>0.002 (0.981)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>−0.073** (0.036)</td>
<td>−0.019 (0.619)</td>
<td>0.001 (0.999)</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>0.090 (0.378)</td>
<td>0.084 (0.410)</td>
<td>0.063 (0.528)</td>
</tr>
<tr>
<td>RoI</td>
<td>−0.023 (0.783)</td>
<td>−0.042 (0.651)</td>
<td>0.023 (0.813)</td>
</tr>
<tr>
<td>RoE</td>
<td>−0.037 (0.462)</td>
<td>0.040 (0.483)</td>
<td>−0.047 (0.430)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Geo Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>593</td>
<td>593</td>
<td>593</td>
</tr>
<tr>
<td>R²</td>
<td>0.649</td>
<td>0.623</td>
<td>0.624</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.631</td>
<td>0.603</td>
<td>0.604</td>
</tr>
</tbody>
</table>

NOTES: *p<0.1; **p<0.05; ***p<0.01
Regressions are estimated with year and geographic fixed effects and with clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1. P-values given in parentheses.

Table 18: OLS Panel Regression: Emerging Markets

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>ΔCoVaR_BAN (1)</th>
<th>ΔCoVaR_INS (2)</th>
<th>ΔCoVaR_NoFin (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life²</td>
<td>0.580* (0.093)</td>
<td>1.092*** (0.003)</td>
<td>1.170** (0.013)</td>
</tr>
<tr>
<td>Life</td>
<td>−0.665* (0.072)</td>
<td>−1.214*** (0.001)</td>
<td>−1.258*** (0.008)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.723*** (0.000)</td>
<td>0.766*** (0.000)</td>
<td>0.807*** (0.000)</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.091 (0.351)</td>
<td>0.106 (0.160)</td>
<td>−0.101 (0.265)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>0.332*** (0.000)</td>
<td>0.185* (0.000)</td>
<td>0.033 (0.000)</td>
</tr>
</tbody>
</table>
Regressions are estimated with year and geographic fixed effects, as well as clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1, P-values given in parentheses.

A.5 Robustness Checks: Supplementary Tables

The following tables show the outcomes of several robustness checks.

Table 19: Correlation Coefficients of the Explanatory Variables

<table>
<thead>
<tr>
<th>Total Assets</th>
<th>Total Liabilities</th>
<th>Net-Claims Ratio</th>
<th>Rol</th>
<th>Life Insurance Ratio</th>
<th>Debt-to-Asset Ratio</th>
<th>Leverage</th>
<th>Non-Core Activities</th>
<th>RoE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.99</td>
<td>0.44</td>
<td>-0.03</td>
<td>0.36</td>
<td>0.13</td>
<td>-0.01</td>
<td>0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>1</td>
<td>0.45</td>
<td>-0.03</td>
<td>0.37</td>
<td>0.13</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.47</td>
<td>-0.06</td>
<td>-0.03</td>
<td>-0.06</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.6</td>
<td>0.18</td>
<td>0.13</td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.11</td>
<td>0.20</td>
<td>-0.03</td>
<td>0.13</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 20: Robustness Check: Size as Total Liabilities

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>(\Delta \text{CoVaR}_{BAN})</th>
<th>(\Delta \text{CoVaR}_{INS})</th>
<th>(\Delta \text{CoVaR}_{NoFin})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life^2</td>
<td>0.470**</td>
<td>0.521**</td>
<td>0.611***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.023)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Life</td>
<td>-0.508**</td>
<td>-0.575**</td>
<td>-0.650***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>
Table 21: Robustness Check: Leverage as Debt-to-Asset Ratio

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>$\Delta \text{CoVaR}_{\text{BAN}}$ (1)</th>
<th>$\Delta \text{CoVaR}_{\text{INS}}$ (2)</th>
<th>$\Delta \text{CoVaR}_{\text{NoFin}}$ (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life2</td>
<td>0.440** (0.017)</td>
<td>0.457** (0.040)</td>
<td>0.592*** (0.009)</td>
</tr>
<tr>
<td>Life</td>
<td>−0.473** (0.015)</td>
<td>−0.510** (0.019)</td>
<td>−0.631*** (0.005)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.600*** (0.000)</td>
<td>0.611*** (0.000)</td>
<td>0.544*** (0.000)</td>
</tr>
<tr>
<td>Leverage: D/A</td>
<td>−0.021 (0.855)</td>
<td>−0.064 (0.347)</td>
<td>−0.014 (0.802)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>0.016 (0.661)</td>
<td>0.061** (0.036)</td>
<td>0.061 (0.194)</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>−0.058 (0.320)</td>
<td>−0.040 (0.497)</td>
<td>−0.068 (0.327)</td>
</tr>
<tr>
<td>RoI</td>
<td>0.063 (0.128)</td>
<td>0.063 (0.144)</td>
<td>0.103* (0.097)</td>
</tr>
<tr>
<td>RoE</td>
<td>−0.032 (0.236)</td>
<td>−0.004 (0.861)</td>
<td>−0.001 (0.965)</td>
</tr>
<tr>
<td>Year Fixed Effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

NOTES: *p<0.1; **p<0.05; ***p<0.01

The table shows the results of the OLS panel regression with total liabilities instead of total assets. Regressions are estimated with year and geographic fixed effects, as well as clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1; P-values given in parentheses.
Table 22: Robustness Check: INS as Sample

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>$\Delta \text{CoVaR}_{\text{BAN}}$ (1)</th>
<th>$\Delta \text{CoVaR}_{\text{INS}}$ (2)</th>
<th>$\Delta \text{CoVaR}_{\text{NoFin}}$ (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td>0.331* (0.078)</td>
<td>0.293 (0.188)</td>
<td>0.383* (0.081)</td>
</tr>
<tr>
<td>Life</td>
<td>-0.365* (0.067)</td>
<td>-0.346 (0.141)</td>
<td>-0.433* (0.058)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.538*** (0.000)</td>
<td>0.580*** (0.000)</td>
<td>0.561*** (0.000)</td>
</tr>
<tr>
<td>Leverage</td>
<td>-0.001 (0.988)</td>
<td>0.010 (0.786)</td>
<td>-0.027 (0.434)</td>
</tr>
<tr>
<td>Non-Core Activities</td>
<td>-0.025 (0.528)</td>
<td>0.013 (0.693)</td>
<td>0.016 (0.705)</td>
</tr>
<tr>
<td>Net-Claims Ratio</td>
<td>0.018 (0.548)</td>
<td>0.021 (0.426)</td>
<td>-0.025 (0.495)</td>
</tr>
<tr>
<td>RoI</td>
<td>-0.018 (0.570)</td>
<td>-0.015 (0.627)</td>
<td>0.023 (0.559)</td>
</tr>
<tr>
<td>RoE</td>
<td>0.027 (0.296)</td>
<td>0.037 (0.126)</td>
<td>0.015 (0.566)</td>
</tr>
</tbody>
</table>

NOTES: *p<0.1; **p<0.05; ***p<0.01

The table shows the results of the OLS panel regression on the model given by Equation 6 from 2000 to 2020 but with the INS as sample (see Table 14). The sample includes pure undiversified monoline life ($\text{Life} = 1$) and non-life ($\text{Life} = 0$) insurers and diversifying multiline insurers engaging in both life and non-life insurance. Regressions are estimated with year and geographic fixed effects, as well as clustered SE at the insurer-level. Regression parameters are standardized with mean 0 and standard deviation 1, P-values given in parentheses.
Table 23: t-test on the Equality of Scaled ∆CoVaR Mean Values

<table>
<thead>
<tr>
<th>Systemic Risk Measure</th>
<th>Undiversified</th>
<th>Diversified</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆CoVaR<sub>BAN</sub></td>
<td>2.519320e-09</td>
<td>6.511318e-10***</td>
</tr>
<tr>
<td>∆CoVaR<sub>INS</sub></td>
<td>2.429158e-09</td>
<td>2.698513e-10***</td>
</tr>
<tr>
<td>∆CoVaR<sub>NoFin</sub></td>
<td>1.672022e-09</td>
<td>1.841832e-10***</td>
</tr>
</tbody>
</table>

The table shows the test of differences between the mean values of the ∆CoVaR regarding the BAN, INS, and NoFin for undiversified and diversified insurers. An unpaired t-test that assumes unequal variances across groups is conducted. Since an insurer’s size is a strong determinant for the insurer’s systemic risk contribution, each insurer’s ∆CoVaR estimate is scaled by the insurer’s size in terms of total assets. Life and non-life insurers, which have at least 85% of their premium income stemming from life or non-life insurance business, are considered as economically undiversified insurers; the residual insurers are considered as diversified. The means between undiversified and diversified insurers are significantly different at the 1% level.
References

European Insurance and Occupational Pensions Authority (2014b). *The underlying assumptions in the standard formula for the solvency capital requirement calculation*.

