NAIC MODEL RULE (REGULATION) FOR RECOGNIZING A NEW ANNUITY MORTALITY TABLE FOR USE IN DETERMINING RESERVE LIABILITIES FOR ANNUITIES

Table of Contents

Section 1.	Authority
Section 2.	Purpose
Section 3.	Definitions
Section 4.	Individual Annuity or Pure Endowment Contracts
Section 5.	Application of the 2012 IAR Mortality Table
Section 6.	Group Annuity or Pure Endowment Contracts
Section7.	Application of the 1994 GAR Table
Section 8.	Separability
Section 9.	Effective Date
Appendix I.	2012 IAM Period Table, Female, Age Nearest Birthday
Appendix II.	2012 IAM Period Table, Male, Age Nearest Birthday
Appendix III.	Projection Scale G2, Female, Age Nearest Birthday

Projection Scale G2, Male, Age Nearest Birthday

Section 1. Authority

Appendix IV.

This rule is promulgated by the Commissioner of Insurance pursuant to Section [insert applicable reference to the Standard Valuation Law] of the [insert state] Insurance Statute.

Section 2. Purpose

The purpose of this rule is to recognize the following mortality tables for use in determining the minimum standard of valuation for annuity and pure endowment contracts: the 1983 Table "a," the 1983 Group Annuity Mortality (1983 GAM) Table, the Annuity 2000 Mortality Table, the 2012 Individual Annuity Reserving (2012 IAR) Mortality Table, and the 1994 Group Annuity Reserving (1994 GAR) Table.

Section 3. Definitions

- A. As used in this rule "1983 Table 'a" means that mortality table developed by the Society of Actuaries Committee to Recommend a New Mortality Basis for Individual Annuity Valuation and adopted as a recognized mortality table for annuities in June 1982 by the National Association of Insurance Commissioners. [See 1982 Proceedings of the NAIC II, page 454.]
- B. As used in this rule "1983 GAM Table" means that mortality table developed by the Society of Actuaries Committee on Annuities and adopted as a recognized mortality table for annuities in December 1983 by the National Association of Insurance Commissioners. [See 1984 Proceedings of the NAIC I, pages 414 to 415.]
- C. As used in this rule "1994 GAR Table" means that mortality table developed by the Society of Actuaries Group Annuity Valuation Table Task Force and shown on pages 866-867 of Volume XLVII of the *Transactions of the Society of Actuaries* (1995).
- D. As used in this rule "Annuity 2000 Mortality Table" means that mortality table developed by the Society of Actuaries Committee on Life Insurance Research and shown on page 240 of Volume XLVII of the *Transactions of the Society of Actuaries* (1995).
- E. As used in this rule, "Period table" means a table of mortality rates applicable to a given calendar year (the Period).
- F. As used in this rule, "Generational mortality table" means a mortality table containing a set of mortality rates that decrease for a given age from one year to the next based on a combination of a Period table and a projection scale containing rates of mortality improvement.

- G. As used in this rule "2012 IAR Mortality Table" means that Generational mortality table developed by the Society of Actuaries Committee on Life Insurance Research and containing rates, q_x²⁰¹²⁺ⁿ, derived from a combination of the 2012 IAM Period Table and Projection Scale G2, using the methodology stated in Section 5.
- H. As used in this rule, "2012 Individual Annuity Mortality Period Life (2012 IAM Period) Table" means the Period table containing loaded mortality rates for calendar year 2012. This table contains rates, q_x^{2012} , developed by the Society of Actuaries Committee on Life Insurance Research and is shown in Appendices 1-2.
- I. As used in this rule, "Projection Scale G2 (Scale G2)" is a table of annual rates, G2_x, of mortality improvement by age for projecting future mortality rates beyond calendar year 2012. This table was developed by the Society of Actuaries Committee on Life Insurance Research and is shown in Appendices 3-4.

Section 4. Individual Annuity or Pure Endowment Contracts

- A. Except as provided in Subsections B and C of this section, the 1983 Table "a" is recognized and approved as an individual annuity mortality table for valuation and, at the option of the company, may be used for purposes of determining the minimum standard of valuation for any individual annuity or pure endowment contract issued on or after [insert effective date of 1976 amendments to the Standard Valuation Law].
- B. Except as provided in Subsection C of this section, either the 1983 Table "a" or the Annuity 2000 Mortality Table shall be used for determining the minimum standard of valuation for any individual annuity or pure endowment contract issued on or after [insert date on or after the effective date of original adoption of this regulation].
- C. Except as provided in Subsection D of this section, the Annuity 2000 Mortality Table shall be used for determining the minimum standard of valuation for any individual annuity or pure endowment contract issued on or after [insert date on or after effective date of this amended regulation].
- D. Except as provided in Subsection E of this section, the 2012 IAR Mortality Table shall be used for determining the minimum standard of valuation for any individual annuity or pure endowment contract issued on or after [insert date on or after effective date of this amended regulation].
- E. The 1983 Table "a" without projection is to be used for determining the minimum standards of valuation for an individual annuity or pure endowment contract issued on or after [insert appropriate date on or after the effective date of this amended regulation], solely when the contract is based on life contingencies and is issued to fund periodic benefits arising from:
 - (1) Settlements of various forms of claims pertaining to court settlements or out of court settlements from tort actions;
 - (2) Settlements involving similar actions such as worker's compensation claims; or
 - (3) Settlements of long term disability claims where a temporary or life annuity has been used in lieu of continuing disability payments.

Section 5. Application of the 2012 IAR Mortality Table

In using the 2012 IAR Mortality Table, the mortality rate for a person age x in year (2012 + n) is calculated as follows:

$$q_x^{2012+n} = q_x^{2012} (1 - G2_x)^n$$

The resulting q_x^{2012+n} shall be rounded to three decimal places per 1,000, e.g., 0.741 deaths per 1,000. Also, the rounding shall occur according to the formula above, starting at the 2012 period table rate.

For example, for a male age 30, q_x^{2012} = 0.741.

 $q_x^{2013} = 0.741 * (1 - 0.010) ^ 1 = 0.73359$, which is rounded to 0.734.

 $q_x^{2014} = 0.741 * (1 - 0.010) ^ 2 = 0.7262541$, which is rounded to 0.726.

A method leading to incorrect rounding would be to calculate q_x^{2014} as q_x^{2013} * (1-0.010), or 0.734 * 0.99 = 0.727. It is incorrect to use the already rounded q_x^{2013} to calculate q_x^{2014} .

Section 6. Group Annuity or Pure Endowment Contracts

- A. Except as provided in Subsections B and C of this section, the 1983 GAM Table, the 1983 Table "a" and the 1994 GAR Table are recognized and approved as group annuity mortality tables for valuation and, at the option of the company, any one of these tables may be used for purposes of valuation for an annuity or pure endowment purchased on or after [insert effective date of 1976 amendments to the Standard Valuation Law] under a group annuity or pure endowment contract.
- B. Except as provided in Subsection C of this section, either the 1983 GAM Table or the 1994 GAR Table shall be used for determining the minimum standard of valuation for any annuity or pure endowment purchased on or after [insert date on or after effective date of original adoption of this regulation] under a group annuity or pure endowment contract.
- C. The 1994 GAR Table shall be used for determining the minimum standard of valuation for any annuity or pure endowment purchased on or after [insert appropriate date on or after effective date of this amended regulation] under a group annuity or pure endowment contract.

Section 7. Application of the 1994 GAR Table

In using the 1994 GAR Table, the mortality rate for a person age x in year (1994 + n) is calculated as follows:

$$q_x^{1994+n} = q_x^{1994} (1 - AA_x)^n$$

where the q_x^{1994} and AA_x are as specified in the 1994 GAR Table.

Section 8. Separability

If any provision of this rule or its application to any person or circumstances is for any reason held to be invalid, the remainder of the regulation and the application of its provisions to other persons or circumstances shall not be affected.

Section 9. Effective Date

The effective date of this rule is [it is recommended that the amended regulation be effective 1/1/2014].

Chronological Summary of Actions (all references are to the Proceedings of the NAIC).

1983 Proc. I 12, 35, 448-449, 459, 520

1984 Proc. I 6, 31, 376, 392, 471-472 (adopted).

1996 Proc. 3rd Quarter 9, 40, 908, 1202, 1236-1237 (amended and reprinted).

2012 Proc. 3rd Quarter, Vol. 199, 113-115, 146-153, 687, 1097 (amended).

2014 4th Quarter (technical correction).

APPENDIX I

2012 IAM Period Table Female, Age Nearest Birthday

AGE	$1000 \cdot q_x^{2012}$						
0	1.621	30	0.300	60	3.460	90	88.377
1	0.405	31	0.321	61	3.916	91	97.491
2	0.259	32	0.338	62	4.409	92	107.269
3	0.179	33	0.351	63	4.933	93	118.201
4	0.137	34	0.365	64	5.507	94	130.969
5	0.125	35	0.381	65	6.146	95	146.449
6	0.117	36	0.402	66	6.551	96	163.908
7	0.110	37	0.429	67	7.039	97	179.695
8	0.095	38	0.463	68	7.628	98	196.151
9	0.088	39	0.504	69	8.311	99	213.150
10	0.085	40	0.552	70	9.074	100	230.722
11	0.086	41	0.600	71	9.910	101	251.505
12	0.094	42	0.650	72	10.827	102	273.007
13	0.108	43	0.697	73	11.839	103	295.086
14	0.131	44	0.740	74	12.974	104	317.591
15	0.156	45	0.780	75	14.282	105	340.362
16	0.179	46	0.825	76	15.799	106	362.371
17	0.198	47	0.885	77	17.550	107	384.113
18	0.211	48	0.964	78	19.582	108	400.000
19	0.221	49	1.051	79	21.970	109	400.000
20	0.228	50	1.161	80	24.821	110	400.000
21	0.234	51	1.308	81	28.351	111	400.000
22	0.240	52	1.460	82	32.509	112	400.000
23	0.245	53	1.613	83	37.329	113	400.000
24	0.247	54	1.774	84	42.830	114	400.000
25	0.250	55	1.950	85	48.997	115	400.000
26	0.256	56	2.154	86	55.774	116	400.000
27	0.261	57	2.399	87	63.140	117	400.000
28	0.270	58	2.700	88	71.066	118	400.000
29	0.281	59	3.054	89	79.502	119	400.000
						120	1000.000

APPENDIX II

2012 IAM Period Table Male, Age Nearest Birthday

0 1.605 30 0.741 60 5.096 90 109.993 1 0.401 31 0.751 61 5.614 91 123.119 2 0.275 32 0.754 62 6.169 92 137.168 3 0.229 33 0.756 63 6.759 93 152.171 4 0.174 34 0.756 64 7.398 94 168.194 5 0.168 35 0.756 65 8.106 95 185.260 6 0.165 36 0.756 66 8.548 96 197.322 7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70	$000 \cdot q_x^{2012}$	AGE 1	$1000 \cdot q_x^{2012}$	AGE	$1000 \cdot q_x^{2012}$	AGE	$1000 \cdot q_x^{2012}$	AGE
2 0.275 32 0.754 62 6.169 92 137.168 3 0.229 33 0.756 63 6.759 93 152.171 4 0.174 34 0.756 64 7.398 94 168.194 5 0.168 35 0.756 65 8.106 95 185.260 6 0.165 36 0.756 66 8.548 96 197.322 7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72				60		30		0
3 0.229 33 0.756 63 6.759 93 152.171 4 0.174 34 0.756 64 7.398 94 168.194 5 0.168 35 0.756 65 8.106 95 185.260 6 0.165 36 0.756 66 8.548 96 197.322 7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73	123.119	91	5.614	61	0.751	31	0.401	1
4 0.174 34 0.756 64 7.398 94 168.194 5 0.168 35 0.756 65 8.106 95 185.260 6 0.165 36 0.756 66 8.548 96 197.322 7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 </td <th>137.168</th> <th>92</th> <td>6.169</td> <td>62</td> <td>0.754</td> <td>32</td> <td>0.275</td> <td>2</td>	137.168	92	6.169	62	0.754	32	0.275	2
5 0.168 35 0.756 65 8.106 95 185.260 6 0.165 36 0.756 66 8.548 96 197.322 7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 7	152.171	93	6.759	63	0.756	33	0.229	3
6 0.165 36 0.756 66 8.548 96 197.322 7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 <t< td=""><th>168.194</th><th>94</th><td>7.398</td><td>64</td><td>0.756</td><td>34</td><td>0.174</td><td>4</td></t<>	168.194	94	7.398	64	0.756	34	0.174	4
7 0.159 37 0.756 67 9.076 97 214.751 8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454	185.260	95	8.106	65	0.756	35	0.168	5
8 0.143 38 0.756 68 9.708 98 232.507 9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627	197.322	96	8.548	66	0.756	36	0.165	6
9 0.129 39 0.800 69 10.463 99 250.397 10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829	214.751	97	9.076	67	0.756	37	0.159	7
10 0.113 40 0.859 70 11.357 100 268.607 11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057	232.507	98	9.708	68	0.756	38	0.143	8
11 0.111 41 0.926 71 12.418 101 290.016 12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.433 51 2.302	250.397	99	10.463	69	0.800	39	0.129	9
12 0.132 42 0.999 72 13.675 102 311.849 13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 23 0.513 53 2.779	268.607	100	11.357	70	0.859	40	0.113	10
13 0.169 43 1.069 73 15.150 103 333.962 14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011	290.016	101	12.418	71	0.926	41	0.111	11
14 0.213 44 1.142 74 16.860 104 356.207 15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 25 0.602 55 3.254	311.849	102	13.675	72	0.999	42	0.132	12
15 0.254 45 1.219 75 18.815 105 380.000 16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254	333.962	103	15.150	73	1.069	43	0.169	13
16 0.293 46 1.318 76 21.031 106 400.000 17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529	356.207	104	16.860	74	1.142	44	0.213	14
17 0.328 47 1.454 77 23.540 107 400.000 18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 28 0.710 58 4.213	380.000	105	18.815	75	1.219	45	0.254	15
18 0.359 48 1.627 78 26.375 108 400.000 19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59	400.000	106	21.031	76	1.318	46	0.293	16
19 0.387 49 1.829 79 29.572 109 400.000 20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	107	23.540	77	1.454	47	0.328	17
20 0.414 50 2.057 80 33.234 110 400.000 21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	108	26.375	78	1.627	48	0.359	18
21 0.443 51 2.302 81 37.533 111 400.000 22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	109	29.572	79	1.829	49	0.387	19
22 0.473 52 2.545 82 42.261 112 400.000 23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	110	33.234	80	2.057	50	0.414	20
23 0.513 53 2.779 83 47.441 113 400.000 24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	111	37.533	81	2.302	51	0.443	21
24 0.554 54 3.011 84 53.233 114 400.000 25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	112	42.261	82	2.545	52	0.473	22
25 0.602 55 3.254 85 59.855 115 400.000 26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	113	47.441	83	2.779	53	0.513	23
26 0.655 56 3.529 86 67.514 116 400.000 27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	114	53.233	84	3.011	54	0.554	24
27 0.688 57 3.845 87 76.340 117 400.000 28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	115	59.855	85	3.254	55	0.602	25
28 0.710 58 4.213 88 86.388 118 400.000 29 0.727 59 4.631 89 97.634 119 400.000	400.000	116	67.514	86	3.529	56	0.655	26
29 0.727 59 4.631 89 97.634 119 400.000	400.000	117	76.340	87	3.845	57	0.688	27
	400.000	118	86.388	88	4.213		0.710	28
120 1000.000	400.000	119	97.634	89	4.631	59	0.727	29
	1000.000	120						

APPENDIX III

Projection Scale G2 Female, Age Nearest Birthday

A CIT	<i>a</i> a	4 CF	20	4 GE	an	A CIE	a 0
AGE	$G2_x$	AGE	$G2_x$	AGE	$G2_x$	AGE	$G2_x$
0	0.010	30	0.010	60	0.013	90	0.006
1	0.010	31	0.010	61	0.013	91	0.006
2	0.010	32	0.010	62	0.013	92	0.005
3	0.010	33	0.010	63	0.013	93	0.005
4	0.010	34	0.010	64	0.013	94	0.004
5	0.010	35	0.010	65	0.013	95	0.004
6	0.010	36	0.010	66	0.013	96	0.004
7	0.010	37	0.010	67	0.013	97	0.003
8	0.010	38	0.010	68	0.013	98	0.003
9	0.010	39	0.010	69	0.013	99	0.002
10	0.010	40	0.010	70	0.013	100	0.002
11	0.010	41	0.010	71	0.013	101	0.002
12	0.010	42	0.010	72	0.013	102	0.001
13	0.010	43	0.010	73	0.013	103	0.001
14	0.010	44	0.010	74	0.013	104	0.000
15	0.010	45	0.010	75	0.013	105	0.000
16	0.010	46	0.010	76	0.013	106	0.000
17	0.010	47	0.010	77	0.013	107	0.000
18	0.010	48	0.010	78	0.013	108	0.000
19	0.010	49	0.010	79	0.013	109	0.000
20	0.010	50	0.010	80	0.013	110	0.000
21	0.010	51	0.010	81	0.012	111	0.000
22	0.010	52	0.011	82	0.012	112	0.000
23	0.010	53	0.011	83	0.011	113	0.000
24	0.010	54	0.011	84	0.010	114	0.000
25	0.010	55	0.012	85	0.010	115	0.000
26	0.010	56	0.012	86	0.009	116	0.000
27	0.010	57	0.012	87	0.008	117	0.000
28	0.010	58	0.012	88	0.007	118	0.000
29	0.010	59	0.013	89	0.007	119	0.000
	0.020	ر ح	0.020	0,	••••	120	0.000
						120	0.000

APPENDIX IV

Projection Scale G2 Male, Age Nearest Birthday

AGE	CO	AGE	CO	AGE	CO	AGE	CO
AGE 0	$G2_x$ 0.010	30	$G2_x$ 0.010	60	$G2_x$ 0.015	90	$G2_x$ 0.007
1	0.010	31	0.010	61	0.015	90 91	0.007
2				62		91	
3	0.010	32 33	0.010	63	0.015	92 93	0.006
	0.010		0.010		0.015		0.005
4	0.010	34	0.010	64	0.015	94	0.005
5	0.010	35	0.010	65	0.015	95	0.004
6	0.010	36	0.010	66	0.015	96	0.004
7	0.010	37	0.010	67	0.015	97	0.003
8	0.010	38	0.010	68	0.015	98	0.003
9	0.010	39	0.010	69 - 2	0.015	99	0.002
10	0.010	40	0.010	70	0.015	100	0.002
11	0.010	41	0.010	71	0.015	101	0.002
12	0.010	42	0.010	72	0.015	102	0.001
13	0.010	43	0.010	73	0.015	103	0.001
14	0.010	44	0.010	74	0.015	104	0.000
15	0.010	45	0.010	75	0.015	105	0.000
16	0.010	46	0.010	76	0.015	106	0.000
17	0.010	47	0.010	77	0.015	107	0.000
18	0.010	48	0.010	78	0.015	108	0.000
19	0.010	49	0.010	79	0.015	109	0.000
20	0.010	50	0.010	80	0.015	110	0.000
21	0.010	51	0.011	81	0.014	111	0.000
22	0.010	52	0.011	82	0.013	112	0.000
23	0.010	53	0.012	83	0.013	113	0.000
24	0.010	54	0.012	84	0.012	114	0.000
25	0.010	55	0.013	85	0.011	115	0.000
26	0.010	56	0.013	86	0.010	116	0.000
27	0.010	57	0.014	87	0.009	117	0.000
28	0.010	58	0.014	88	0.009	118	0.000
29	0.010	59	0.015	89	0.008	119	0.000
						120	0.000