LIFE RISK-BASED CAPITAL (E) WORKING GROUP
Monday, March 23, 2020
10:00 – 11:00 a.m.
ROLL CALL

Philip Barlow, Chair
District of Columbia

John Robinson
Minnesota

Steve Ostlund
Alabama

William Leung
Missouri

Perry Kupferman
California

Rhonda Ahrens
Nebraska

Deborah Batista
Colorado

Seong-min Eom
New Jersey

Wanchin Chou
Connecticut

Bill Carmello
New York

Gilbert Moreau
Florida

Andy Schallhorn
Oklahoma

Vincent Tsang
Illinois

Mike Boerner
Texas

Tomasz Serbinowski
Utah

NAIC Support Staff: Dave Fleming

AGENDA

1. Consider Adoption of its Feb. 14 and Fall National Meeting Minutes—Philip Barlow (DC) Attachments A & B
2. Consider Exposure of C-3 2019 Instruction Deletion—Philip Barlow (DC) Attachment C
3. Discuss the American Academy of Actuaries’ (Academy) Bond Proposal—Philip Barlow (DC)
4. Hear an Update from the Academy’s C2 Work Group—Chris Trost (Academy) Attachment D
5. Hear an Update from the Academy’s C3 Life and Annuities Work Group—Link Richardson (Academy) Attachment E
6. Discuss Longevity Risk Correlation—Philip Barlow (DC)
7. Receive an Update on the Health Test Language Proposal—Steve Drutz (WA)
8. Discuss Scheduling Conference Calls—Philip Barlow (DC)
9. Discuss Any Other Matters Brought Before the Working Group—Philip Barlow (DC)
10. Adjournment
This page intentionally left blank.
Life Risk-Based Capital (E) Working Group
Conference Call
February 14, 2020

The Life Risk-Based Capital (E) Working Group of the Capital Adequacy (E) Task Force met via conference call Feb. 14, 2020. The following Working Group members participated: Philip Barlow, Chair (DC); Perry Kupferman (CA); Deborah Batista (CO); Wanchin Chou (CT); Gilbert Moreau (FL); Vincent Tsang (IL); John Robinson (MN); William Leung (MO); Rhonda Ahrens (NE); Seong-min Eom (NJ); Bill Carmello (NY); Andrew Schallhorn (OK); Mike Boerner and Rachel Hemphill (TX); and Tomasz Serbinowski (UT).

1. **Adopted the Proposal to Implement a Longevity Risk Charge**

Ms. Ahrens reminded the Working Group that there are two proposals with the American Academy of Actuaries’ (Academy’s) suggested factors for longevity exposed: one without a covariance adjustment and one with a covariance adjustment. Mr. Barlow said the Working Group received several comment letters. He provided those submitting comment letters the opportunity to speak on their comments. Mr. Carmello said he understands the possible correlation between mortality and longevity, but the risk-based capital (RBC) formula is rather crude, and there are other places where possible correlations are not used. He said including the correlation in this instance would, for a number of companies, result in no charge for longevity risk, which defeats the purpose of this project. He said New York supports the version of the proposal without correlation. Paul Navratil (Academy) presented the Academy’s comment letter (Attachment 1). He said there had been some questions in the past about whether the proposed factors would change depending upon whether correlation is included, and he said they would not. He said the Academy does believe reflecting the correlation is important to achieve consistency across companies. Brian Bayerle (American Council of Life Insurers—ACLI) presented the ACLI’s comment letter (Attachment 2), noting the ACLI’s support for the Academy’s proposal with the covariance adjustment. He said the ACLI also recommends deferring implementation until the Academy’s work on new mortality factors is completed, and he suggested the possibility of including the longevity proposal on an informational basis for 2020 reporting. Frederick Slater (Nationwide) presented Nationwide’s comment letter (Attachment 3), indicating support for the version of the proposal, including covariance along with suggesting clarity with respect to scope regarding variable annuity living benefits. Arthur Panighetti (Pacific Life) presented Pacific Life’s comment letter (Attachment 4) supporting the Academy’s proposal and echoing the ACLI’s support for the inclusion of covariance. Sam Early (Principal) presented Principal’s comment letter (Attachment 5) expressing support for the proposal that includes a –33% correlation. He said any implementation of the longevity charge will require taking a position, either explicitly or implicitly, on what the correlation between the longevity charge and the mortality charge is. Mr. Carmello asked whether the Academy’s proposal limits the covariance adjustment so a company does not end up with a lower RBC requirement than before the longevity charge goes into effect if the Working Group goes with the correlation approach. Mr. Barlow said his understanding is that there is nothing built into the proposal to do that, and depending upon the correlation factor chosen, there could be companies whose authorized control level RBC could decrease. Mr. Navratil said that the recommendation would, in theory, allow for a reduction in C-2 of around 4-6% maximum, which the Academy believes is consistent with the offsets between the risks. He said the Academy also provided an alternative formula that would introduce guardrail factors that would floor the C-2 risk at the higher of the longevity or the mortality amount and prevent C-2 from ever going down.

Based on the comments received, Mr. Barlow suggested that the first decision the Working Group needs to make is whether to defer the proposal until the Academy’s work on potential mortality changes is complete. If the Working Group wants to move forward, he suggested that the Working Group could either adjust the covariance factor or put in something that prevents a negative C-2 amount. If the Working Group decides to adjust the factor, he suggested that the Working Group could move forward with the structural change needed and have a little more time to decide on the appropriate covariance factor.

Ms. Ahrens made a motion, seconded by Mr. Carmello, to adopt the structural changes to incorporate a longevity risk charge as presented in the Academy’s Nov. 22, 2019, letter, which includes the covariance adjustment and the guardrail to be determined by the end of June, with the individual longevity schedule that was not included in that letter, along with suggested corrections to the annual statement references. The motion passed unanimously.

2. **Adopted Proposed C-3 Instructional Changes and a C-3 Guidance Document**

Ms. Hemphill said this issue has to do with the adoption of the Variable Annuities Framework and the timing of comparisons involved in the phase-in for reserves versus the phase-in for C-3 and the impact of voluntary reserves. She said there is a similar
issue with smoothing. The modifications to the instructions will address this for year-end 2020, and the guidance document is to highlight the issue on smoothing for 2019. Ms. Hemphill made a motion, seconded by Mr. Leung, to adopt the C-3 instructional changes for year-end 2020 and the C-3 guidance document. The motion passed unanimously.

3. **Discussed the Treatment of Alien Affiliates**

Mr. Barlow asked Working Group members to consider two items with respect to the life RBC treatment of alien affiliates. The first has to do with a distinction between Canadian and other alien affiliates. He said there have not been any reported Canadian affiliates in 10 years, and he suggested eliminating that distinction. The second has to do with other alien affiliates and a change made in 2010 to exclude them from both the numerator and the denominator of the RBC calculation. Mr. Barlow said the issues that gave rise to this change were that it was not really risk-based in that the affiliate having more capital negatively affected the RBC calculation and, to a lesser extent, the comparability between mutual and stock companies. With the work being done by the Group Capital Calculation (E) Working Group and the fact that there is more information now about these types of companies, he suggested that it would be good for the Working Group to review both of these. He asked Working Group members to start thinking about these items.

Having no further business, the Life Risk-Based Capital (E) Working Group adjourned.
The Life Risk-Based Capital (E) Working Group of the Capital Adequacy (E) Task Force met in Austin, TX, Dec. 7, 2019. The following Working Group members participated: Philip Barlow, Chair (DC); Steve Ostlund (AL); Eric Unger (CO); Carolyn Morgan (FL); Vincent Tsang (IL); Fred Andersen (MN); William Leung (MO); Rhonda Ahrens (NE); Seong-min Eom (NJ); Puran Bheamsain (NY); Mike Boerner and Rachel Hemphill (TX); and Tomasz Serbinowski (UT). Also participating were: Mike Yanacheak (IA); and Peter Weber (OH).

1. **Adopted its Oct. 23 and Summer National Meeting Minutes**

 Mr. Ostlund made a motion, seconded by Ms. Eom, to adopt the Working Group’s Oct. 23 (Attachment Three-A) and Aug. 3 (see NAIC Proceedings – Summer 2019, Capital Adequacy (E) Task Force, Attachment Three) minutes. The motion passed unanimously.

2. **Adopted the Longevity Risk (A/E) Subgroup’s Nov. 25, Nov. 4, Oct. 7, Sept. 30 and Sept. 18 Minutes**

 Ms. Ahrens made a motion, seconded by Mr. Ostlund, to adopt the Longevity Risk (A/E) Subgroup’s Nov. 25 (Attachment Three-B), Nov. 4 (Attachment Three-C), Oct. 7 (Attachment Three-D), Sept. 30 (Attachment Three-E) and Sept. 18 (Attachment Three-F) minutes. The motion passed unanimously.

3. **Exposed the Longevity Risk (A/E) Subgroup’s Recommendation for Public Comment**

 Ms. Ahrens said the Subgroup has been meeting to work on its recommendation for a longevity C-2 charge. She said the Subgroup’s memorandum (Attachment Three-G) to the Working Group provides an introduction with the general discussions that the Subgroup has had, provides its recommendation that the Working Group accept the factors proposed by the American Academy of Actuaries (Academy) Longevity Risk Task Force (Academy Task Force) (see NAIC Proceedings – Spring 2019, Capital Adequacy (E) Task Force, Attachment Five-D), and highlights the areas where the Subgroup did not reach full agreement. She said one of these areas is scope and, specifically, longevity reinsurance transactions (LRT) where there are still some complicated questions that need to be addressed. She said the Subgroup is recommending that the Working Group move forward with LRT scoped out for now with direction to the Subgroup to continue its study of LRT. She said the memorandum also addresses correlation and includes the Subgroup’s conclusion that correlation between longevity and mortality risk within the formula extends beyond the Subgroup’s charge. She said the memorandum includes as attachments the Academy Task Force’s original proposal, which is what the Subgroup’s recommendation is based upon (see NAIC Proceedings – Spring 2019, Capital Adequacy (E) Task Force, Attachment Five-D), the Academy Task Force’s update on correlation, which was presented to the Working Group at the Summer National Meeting (see NAIC Proceedings – Summer 2019, Capital Adequacy (E) Task Force, Attachment Three-H), and the actual proposal form with the risk-based capital (RBC) blank and instruction changes. She highlighted the fact that the blank and instruction changes being recommended do not include correlation (Attachment Three-H), but that the Academy Task Force also submitted an alternative presentation of the blank and instruction changes, which does include correlation (Attachment Three-I). Brian Bayerle (American Council of Life Insurers—ACLI) presented the ACLI’s comment letter (Attachment Three-J) suggesting that the Working Group include the Academy Task Force’s alternative, including correlation in any exposure.

 The Working Group agreed with the Subgroup’s recommendation to scope out LRT for now with direction to the Subgroup to continue its work on this aspect. The Working Group also agreed to having consideration of correlation done by the Working Group. The Working Group agreed to expose the Subgroup’s recommended RBC blank and instructions changes, which do not include correlation, along with the Academy Task Force’s alternative, including correlation in order to get comments on both, for a public comment period ending Feb. 7, 2020.
4. **Heard an Update from the Academy C2 Work Group**

Chris Trost (Academy) said the Academy C2 Work Group’s charge is to review and, if appropriate, recommend changes to the life mortality RBC factors which, for the most part, have not been updated since they were originally developed. He said an update was given to the Working Group in June covering the assumptions and methods that were being used, and they have tried to incorporate the feedback that they got into their work. While the Work Group had presented some preliminary factors, based on that feedback and other constraints, he said the Work Group is not yet at a point to recommend factors; but he provided an update (Attachment Three-K) that includes that feedback’s impact on its work on each of the components of mortality risk. Mr. Barlow suggested scheduling a call specifically to discuss this before a final proposal is presented so Working Group member’s questions regarding some of the technical considerations can be addressed.

5. **Received an Update on ESGs**

Pat Allison (NAIC) said a request was made to NAIC staff during a July 16 joint conference call of the Working Group and the Life Actuarial (A) Task Force to develop a request for proposal (RFP) to find a vendor to provide an economic scenario generator (ESG) to replace the Academy’s ESG and be enhanced over time. She said work is continuing on the RFP, and the plan is for it to be a prescribed ESG for life and annuity reserves and capital involving VM-20, Requirements for Principle-Based Reserves for Life Products; VM-21, Requirements for Principle-Based Reserves for Variable Annuities; C3 Phase I; and C3 Phase II. She said the group drafting the RFP includes state insurance regulators, NAIC staff, the Academy, the ACLI, and industry subject-matter experts (SMEs); and it is working with a target completion date of the first quarter of 2020. She said there are a lot of steps after the RFP is issued, and the earliest implementation date would be 2022.

6. **Discussed Comments Received on Life Growth Risk**

Mr. Barlow said there were two comment letters received (Attachments Three-L and Three-M). Mr. Bayerle presented the ACLI’s comment letter and said the ACLI does not believe that there is a need for a life growth risk at this time, and he highlighted the two main points detailed in their comment letter: 1) state insurance regulators already have tools to assess life growth risk; and 2) rapid growth is less prevalent than in health or property/casualty (P/C) insurance. Mr. Barlow said he struggles with the same issue that the Operational Risk (E) Subgroup did in that there does not appear to be a good way to implement a growth risk charge for life insurance. He suggested tabling this issue until an actual approach to implementing it is presented or otherwise arises as something the Working Group needs to address. The Working Group agreed.

7. **Discussed Other Matters**

Ms. Hemphill detailed an issue with the new Variable Annuities Framework with regard to the phase in and smoothing. She said if there are voluntary reserves under the old framework, they will inappropriately reduce the C-3 RBC amount in the total asset requirement (TAR) under the new framework, even if there are no voluntary reserves being held under the new framework. She said there is a disconnect in that for the VM-21 reserve, the phase in is done as of Dec. 31, 2020. Doing a comparison between the old and the new frameworks while the C-3 phases in is based on a 2019 year-end calculation. She said there is a related issue with smoothing due to the treatment of voluntary reserves. She said she has discussed this with Mr. Bayerle, and there is agreement that this was an unintended piece of the language that was adopted, so they will be working on a way to address this. This can be addressed for 2020 on the capital side, but it is an issue to the extent that companies have voluntary reserves early adopted for 2019. Mr. Barlow noted that it is too late for the Working Group to change anything for 2019, but he suggested that the Working Group could issue some guidance on this issue and asked NAIC staff to assist in facilitating this.

Having no further business, the Life Risk-Based Capital (E) Working Group adjourned.

© 2019 National Association of Insurance Commissioners 2
INTEREST RATE RISK AND MARKET RISK
LR027

The following instructions for the Interest Rate Risk and Market Risk will remain effective independent of the status of the sunset provision, Section 8, of Actuarial Guideline XLVIII (AG 48) in a particular state or jurisdiction. This instruction will be considered for change once the amendment referenced in AG 48, Section 8, regarding credit for reinsurance, is adopted by the NAIC.

Basis of Factors

The interest rate risk is the risk of losses due to changes in interest rate levels. The factors chosen represent the surplus necessary to provide for a lack of synchronization of asset and liability cash flows.

The impact of interest rate changes will be greatest on those products where the guarantees are most in favor of the policyholder and where the policyholder is most likely to be responsive to changes in interest rates. Therefore, risk categories vary by withdrawal provision. Factors for each risk category were developed based on the assumption of well-matched asset and liability durations. A loading of 50 percent was then added on to represent the extra risk of less well-matched portfolios. Companies must submit an unqualified actuarial opinion based on asset adequacy testing to be eligible for a credit of one-third of the RBC otherwise needed. The interrogatory on Line (1.1) should be answered Yes if the opinion is unqualified. It should also be answered Yes if the opinion is qualified but the only reason for qualification of the opinion is because of the direction provided in AG 48.

Consideration is needed for products with credited rates tied to an index, as the risk of synchronization of asset and liability cash flows is tied not only to changes in interest rates but also to changes in the underlying index. In particular, equity-indexed products have recently grown in popularity with many new product variations evolving. The same C-3 factors are to be applied for equity-indexed products as for their non-indexed counterparts; i.e., based on guaranteed values ignoring those related to the index.

Cash Flow Modeling for C-3 RBC

A company may be required or choose to perform cash flow modeling to determine its C-3 RBC requirement. Because of the widespread use of increasingly well-disciplined scenario testing for actuarial opinions based upon an asset adequacy analysis involving cash flow testing, it was determined that a practical method of measuring the degree of asset/liability mismatch existed. It involves further cash flow modeling. Some companies may choose to or be required to calculate part of the C-3 RBC requirement on Certain Annuities and Single Premium Life Insurance under a method using cash flow modeling techniques. Refer to LR049 Exemption Test: Cash Flow Testing for C-3 RBC for determination of exemption from this cash flow modeling requirement. Companies are required to calculate the C-3 RBC requirement on Variable Annuities and Similar Products as described in the instructions for line (37).

Factor-Based RBC for Reserves on contracts that are Cash Flow Modeled for Interest Rate Risk

Lines (2) though (16) include the reserves for contracts that were modeled for interest rate risk following the guidance of Appendix 1 of the instructions. ½ of this factor-based amount is used in the floor determined in line (34)

The risk categories are:

(a) Low-Risk Category

The basic risk-based capital developed for annuities and life insurance in the low-risk category was based on an assumed asset/liability duration mismatch of 0.125 (i.e., a well-matched portfolio). This durational gap was combined with a possible 4 percent one-year swing in interest rates (the maximum historical interest rate swing 95 percent of the time) to produce a pre-tax factor of 0.0063. For a less well-matched portfolio, the risk-based capital pre-tax factor reflecting the 50 percent loading discussed above is 0.0095.

(b) Medium and High-Risk Category
The factors for the medium and high-risk categories were determined by measuring the value of the additional risk from the more discretionary withdrawal provisions based on assumptions of policyholder behavior and 1,000 random interest rate scenarios. Supplementary contracts not involving life contingencies and dividend accumulations are included in the medium-risk category due to the historical tendency of these policyholders to be relatively insensitive to interest rate changes.

Additional Component for Callable/Pre-Payable Assets
Identify the amount of callable/pre-payable assets (including IOs and similar investments) supporting reserves classified in this section. The C-3 requirement after taxes is 50 percent of the excess, if any, of book/adjusted carrying value above current call price. The calculation is done on an asset-by-asset basis. NOTE: If a company is required to calculate part of the RBC based on cash flow testing for C-3 RBC, the factor-based requirements for callable/pre-payable assets used in that testing is zero.

Factor-Based RBC for All Other Reserves not included in Reserves that are Cash Flow Modeled for Interest Rate Risk

The risk categories are:

(a) Low-Risk Category
The basic risk-based capital developed for annuities and life insurance in the low-risk category was based on an assumed asset/liability duration mismatch of 0.125 (i.e., a well-matched portfolio). This durational gap was combined with a possible 4 percent one-year swing in interest rates (the maximum historical interest rate swing 95 percent of the time) to produce a pre-tax factor of 0.0063. For a less well-matched portfolio, the risk-based capital pre-tax factor reflecting the 50 percent loading discussed above is 0.0095.

(b) Medium and High-Risk Category
The factors for the medium and high-risk categories were determined by measuring the value of the additional risk from the more discretionary withdrawal provisions based on assumptions of policyholder behavior and 1,000 random interest rate scenarios. Supplementary contracts not involving life contingencies and dividend accumulations are included in the medium-risk category due to the historical tendency of these policyholders to be relatively insensitive to interest rate changes.

Additional Component for Callable/Pre-Payable Assets
Identify the amount of callable/pre-payable assets (including IOs and similar investments) not reported elsewhere in this schedule. This excludes callable/pre-payable assets supporting Reserves on Certain Annuities and Single Premium Life Insurance that were Cash Flow Modeled. This includes callable/pre-payable assets supporting other reserves and capital and surplus. The C-3 requirement after taxes is 50 percent of the excess, if any, of book/adjusted carrying value above current call price. The calculation is done on an asset-by-asset basis and reported in aggregate.

Specific Instructions for Application of the Formula

Lines (2) through (16)
These lines deal with Certain Annuities and Single Premium Life Insurance for which reserves were cash flow modeled for RBC. Guaranteed Indexed separate accounts following a Class 1 investment strategy are reported as low-risk Line (2). The fixed portion of equity-based variable products and Guaranteed indexed separate accounts following a Class II investment strategy are excluded. See Proposed new Risk-Based Capital Method for Separate Accounts that Guarantee an Index, June 2003. Company source records entered in Column (3) of Lines (13), (15) and (16) should be adjusted to a pre-tax basis.

Line (17)
Should equal the sum of Lines (6) + (11) + (14) + (15). Line (16) is not included in the Line (17) total. Instead, it is included in the Line (32) total.

Lines (18) through (31)
These lines cover:
(a) The remaining company business that was not cash flow modeled for C-3 RBC excluding products included under the “Cash Flow Modeling for C-3 RBC Requirements for Variable Annuities and Similar Products and
(b) Business in companies that did not cash flow model for C-3 RBC.

The calculation for risk-based capital should not include unitized separate accounts without guarantees even though they may be included in Item 32 of the Notes to Financial Statements. Separate accounts with guarantees should be included, except for those separate accounts that guarantee an index and follow a Class II investment strategy and certain other guaranteed separate accounts as defined below. Synthetic GICs net of certain credits should be included in this section. The provisions for these credits to C-3 requirements is provided in the Separate Accounts section of the risk-based capital instructions. Experience-rated pension contracts defined below should be excluded from “annuity reserves with fair value adjustment” and “annuity reserves not withdrawable.” All amounts should be reported net of reinsurance, net of policy loans and adjusted for assumed and ceded modified coinsurance.

Experience-rated group and individual pension business that meets all of the following four conditions is excluded from C-3 factor-based risk:
(a) General account funded;
(b) Reserve interest rate is carried at no greater than 4 percent and/or fund long-term interest guarantee (in excess of a year) does not exceed 4 percent;
(c) Experience rating mechanism is immediate participation, retroactive credits, or other technique other than participating dividends; and
(d) Either is not subject to discretionary withdrawal or is subject to fair value adjustment, but only if the contractually defined lump sum fair value adjustment reflects portfolio experience as well as current interest rates and is expected to pass both credit risk and rate risk to the policyholder at withdrawal. (A lump sum settlement based only on changes in prevailing rates does not meet this test. Book value cash out options meet this test as long as the present value of payments using U.S. Treasury spot rates is less than or equal to the lump sum fair value on the valuation date and the policyholder does not have an option to change the payment period once payments begin.)

For companies not exempt from cash flow testing for C-3 RBC, such testing is to include those experience-rated products exempted from the formula factors, but for which cash flow testing is done as a part of the asset adequacy testing.

Non-indexed separate account business with guarantees that satisfy both conditions (b) and (d) above is excluded from C-3 factor-based risk.

Guaranteed indexed separate account business following a Class I investment strategy is reported on Line (18). Note that in the AAA Report “Proposed New Risk-Based Capital Method for Separate Accounts That Guarantee an Index” (adopted by the NAIC Life Risk-Based Capital Working Group in New York, NY, June 2003), there is a stress test applicable to Class I investment strategies for a company that is not subject to scenario testing requirements.

Company source records entered in Column (3) of Lines (30) and (31) should be adjusted to a pre-tax basis.

Line (33)
Enter in Column (3) the pre-tax interest rate risk results of cash flow testing per the Appendix 1a methodology. Line (33) should be completed by all companies who do cash flow modeling of Certain Annuities and Single Premium Life Insurance for C-3 RBC (see Appendix 1) except those with less than $100 million in admitted assets at year-end, unless the answer to Line (14) or Line (22) of LR049 Exemption Test: Cash Flow Testing for C-3 RBC is “Yes” or if the company chooses to do C-3 RBC cash flow testing on a continuing basis. Once a company chooses to use the C-3 RBC cash flow testing method to calculate RBC it must continue to do so unless regulatory approval from the domiciliary jurisdiction is received to go back to the factor-based method.

Line (34)
If Line (33) is equal to zero, then Line (34) should equal Line (32). Otherwise, Line (34) should equal Line (32) plus Line (33) less Line (16) less Line (17) subject to a minimum of 0.5 times Line (32).
Enter the interest rate risk component from the Cash Flow Modeling for C-3 RBC Requirements Variable Annuities and Similar Products (see Line (37). The interest rate risk component should be entered on a pre-tax basis using the enacted maximum corporate income tax rate.

Total interest rate risk. Equals Line (34) plus Line (35).

Cash Flow Modeling for C-3 RBC Requirements for Variable Annuities and Similar Products:
Overview

The amount reported on Line (35) and Line (37) is calculated using the 7-step process defined below. This calculation applies to all policies and contracts that have been valued following the requirements of AG-43 or VM-21. For contracts whose reserve was determined using the Alternative Methodology (VM-21 Section 7) see step 3 while all other contracts follow steps 1 and 2, then all contracts follow steps 4 - 7.

Step 1 CTE98: The first step is to determine CTE98 by applying the one of the two methodologies described in paragraph A below.

Step 2 C-3 RBC: using the formulas in paragraph B, determine the C-3 RBC amount based on the amount calculated in step (1). Floor this amount at $0.

Step 3 Determine the C-3 RBC using the Alternative Methodology for any business subject to that requirements as described in paragraph C.

Step 4 As described in paragraph D below, the C-3 RBC amount is the sum of the amounts determined in steps 2 and 3 above, but not less than zero. The Total Asset Requirement is the Reserve based on the requirements of VM-21 prior to the application of any phase-in, plus the C-3 RBC amount.

Step 5: For a company that has elected a Phase-in for reserves following VM-21 Section 2.B., the C-3 RBC amount is to be phased-in over the same time period following the requirements in paragraph E below.

Step 6 Apply the smoothing rules (if applicable) to the C-3 RBC amount in step (4) or (5) as applicable.

Step 7 Divide the amount from Step 4, 5, or 6 (as appropriate) by (1-enacted maximum federal corporate income tax rate). Split this amount into an interest rate risk portion and a market risk portion, as described in paragraph G.

The interest rate portion of the risk should be included in Line (35) and the market risk portion in Line (37).

The C-3 RBC is calculated as follows:

A. CTE (98) is calculated as follows: Except for policies and contracts subject to the Alternative Methodology (See C. below), apply the CTE methodology described in NAIC Valuation Manual VM-21 and calculate the CTE (98) as the numerical average of the 2 percent largest values of the Scenario Reserves, as defined by Section 4 of VM-21. In performing this calculation, the process and methods used to calculate the Scenario Reserves use the requirements of VM-21 and should be the same as used for the reserve calculations. The effect of Federal Income Tax should be handled following one of the following two methods

1. If using the Macro Tax Adjustment (MTA): The modeled cash flows will ignore the effect of Federal Income Tax. As a result, for each individual scenario, the numerical value of the scenario reserve used in this calculation should be identical to that for the same scenario in the Aggregate Reserve calculation under VM-21. Federal Income Tax is reflected later in the formula in paragraph B.1.

2. If using Specific Tax Recognition (STR): At the option of the company, CTE After-Tax (98) (CTEAT (98)) may be calculated using an approach in which the effect of Federal Income Tax is reflected in the projection of Accumulated Deficiencies, as defined in Section 4.A. of VM-21, when calculating the Scenario Reserve for each scenario. To reflect the effect of Federal Income Tax, the company should find a reasonable and consistent basis for approximating the evolution of tax reserves in the projection, taking into account restrictions around the size of the tax reserves (e.g., that tax reserve must equal or exceed the cash surrender value for a given contract).
Accumulated Deficiency at the end of each projection year should also be discounted at a rate that reflects the projected after-tax discount rates in that year. In addition, the company should add the Tax Adjustment as described below to the calculated CTEAT (98) value.

3. A company that has elected to calculate CTEAT (98) using STR may not switch back to using MTA in the projection of Accumulated Deficiencies without prominently disclosing that change in the certification and supporting memorandum. The company should also disclose the methodology adopted, and the rationale for its adoption, in the documentation required by paragraph J below.

4. Application of the Tax Adjustment: Under the U.S. IRC, the tax reserve is defined. It can never exceed the statutory reserve nor be less than the cash surrender value. If a company is using STR and if the company’s actual tax reserves exceed the projected tax reserves at the beginning of the projection, a tax adjustment is required.

The CTEAT (98) must be increased on an approximate basis to correct for the understatement of modeled tax expense. The additional taxable income at the time of claim will be realized over the projection and will be approximated using the duration to worst, i.e., the duration producing the lowest present value for each scenario. The method of developing the approximate tax adjustment is described below.

The increase to CTEAT (98) may be approximated as the corporate tax rate times f times the difference between the company’s actual tax reserves and projected tax reserves at the start of the projections. For this calculation, f is calculated as follows: For the scenarios reflected in calculating CTE (98), the scenario reserve is determined and its associated projection duration is tabulated. At each such duration, the ratio of the number of contracts in force (or covered lives for group contracts) to the number of contracts in force (or covered lives) at the start of the modeling projection is calculated. The average ratio is then calculated over all CTE (98) scenarios and f is one minus this average ratio. If the Alternative Method is used, f is approximated as 0.5.

B. Determination of RBC amount using stochastic modeling:

1. If using the MTA: Calculate the RBC Requirement by the following formula in which the statutory reserve is the actual reserve reported in the Annual Statement, in the second term – i.e., the difference between statutory reserves and tax reserves multiplied by the Federal Income Tax Rate – may not exceed the portion of the company’s non-admitted deferred tax assets attributable to the same portfolio of contracts to which VM-21 is applied in calculating statutory reserves:

\[
25\% \times ((\text{CTE (98)} + \text{Additional Standard Projection Amount} - \text{Statutory Reserve}) \times (1 - \text{Federal Income Tax Rate}) - (\text{Statutory Reserve} - \text{Tax Reserve}) \times \text{Federal Income Tax Rate})
\]

2. If the company elects to use the STR: the C-3 RBC is determined by the following formula:

\[
25\% \times (\text{CTEAT (98)} + \text{Additional Standard Projection Amount} - \text{Statutory Reserve})
\]

The Additional Standard Projection Amount is calculated using the methodology outlined in Section 6 of VM-21.

The Total Asset Requirement is defined as the Stochastic Reserve determined according to VM-21 Section 4 plus the C-3 RBC amount determined in this step. All values are prior to any consideration of Phase-in allowances for either reserve or C-3 RBC, or any C-3 RBC smoothing allowance.

C. Determination of C-3 RBC using Alternative Methodology: This calculation applies to all policies and contracts that have been valued following the requirements of AG-43 or VM-21, for which the reserve was determined using the Alternative Methodology (VM-21 Section 7). The C-3 RBC amount is determined by applying the methodology as defined in Appendix 2 to these instructions.
D. **The C-3 RBC amount** is the sum of the amounts determined in paragraphs B and C above, but not less than zero. The TAR is defined as the Reserve determined according to VM-21 plus the C-3 RBC amount. All values are prior to any consideration of Phase-in allowances for either reserve or C-3 RBC, or any C-3 RBC smoothing allowance. The RBC values are post-tax.

E. **Phase-in:** A company that has elected to phase-in the effect of the new reserve requirements following VM-21 Section 2.B. shall phase in the effect on C-3 RBC over the same time period, using the following steps:
1. Begin with the C-3 RBC amount from step 7 for Dec. 31, 2019 LR027 Line (37) instructions for all business within the scope of the Variable Annuities modeling requirements as of 12/31/19. Add to this the amount of C-3 RBC computed in the same manner as the 2019 value for any reinsurance ceded that is expected to be recaptured in 2020 and in the scope of the Variable Annuities modeling requirements. This amount is 2019 RBC
2. Determine the C-3 RBC amount as of 12/31/19 using paragraphs A, B, C, and D for the same inforce business as in 1. Labeled as 2019 RBC New
3. Determine the phase-in amount (PIA) as the excess of 2019RBC New over 2019RBC
4. For 12/31/2020, compute the C-3 RBC following paragraphs A – D above, then subtract PIA times (2/3)
5. For 12/31/2021, compute the C-3 RBC following paragraphs A – D above, then subtract PIA times (1/3)

Guidance Note: For a company that has adopted a Phase-in for reserves longer than 3 years, adjust the above formula to reflect the actual period with uniform amortization amounts during that period.

F. **Smoothing of C-3 RBC amount**

A company should decide whether or not to smooth the C-3 RBC calculated in paragraph D or E above to determine the amount in Line (37). For any business reinsured under a coinsurance agreement that complies with all applicable reinsurance reserve credit “transfer of risk” requirements, the ceding company shall reduce the reserve in proportion to the business ceded while the assuming company shall use a reserve consistent with the business assumed.

A company may choose to smooth the C-3 RBC calculated in paragraph D or E above. A company is required to get approval from its domestic regulator prior to changing its decision about smoothing from the prior year. In addition, a company that has elected to smooth the risk-based capital is required to get approval from its domestic regulator prior to smoothing if it has experienced a material change in its Clearly Defined Hedging Strategy from the prior year. For this purpose, a company’s Clearly Defined Hedging Strategy is considered to have experienced a material change if any of the items outlined in VM-21 Section 1.D.2 in the current year differs from that in the prior year.

To implement smoothing, use the following steps. If a company does not qualify to smooth or a decision has been made not to smooth, go to paragraph G.
1. Determine the C-3 RBC amount calculated in paragraph D or E above
2. Determine the aggregate reserve for the contracts covered by the Variable Annuity Stochastic modeling requirements.
3. Determine the ratio of the C-3 RBC / reserve for current year.
4. Determine the C-3 RBC as actually reported for the prior year Lines (35) plus (37) and adjust that amount to a post-tax amount by multiplying by (1- enacted maximum federal corporate income tax rate).
5. Determine the aggregate reserve for the contracts in scope of these requirements for the prior year-end.
6. Determine the ratio of the C-3 RBC / reserve for prior year.
7. Determine a ratio as 0.4*(6) plus 0.6*(3) {40% prior year ratio and 60% current year ratio}.
8. Determine the risk-based capital for current year as the product of (7) and (2) {adjust (2) to be actual 12/31 reserve}.

G. The amount determined in paragraphs D., E., or F. above for the contracts shall be divided by (1-enacted maximum federal corporate income tax rate) to arrive at a pre-tax amount. This pre-tax amount shall be split into a component for interest rate risk and a component for market risk. Neither component may be less than zero. The provision for the interest rate risk, if any, is to be reported in Line (35). The market risk component is reported in Line (37).
The amount reported in Line (37) is to be combined with the C-1cs component for covariance purposes.

H. The way grouping (of funds and of contracts), sampling, number of scenarios, and simplification methods are handled is the responsibility of the company. However, all these methods are subject to Actuarial Standards of Practice, supporting documentation and justification, and should be identical to those used in calculating the company’s statutory reserves following VM-21.

I. Certification of the work done to set the C-3 RBC amount for Variable Annuities and Similar products are the same as are required for reserves as part of VM-31. The certification should specify that the actuary is not opining on the adequacy of the company’s surplus or its future financial condition.

The certification(s) should be submitted by hard copy with any state requiring an RBC hard copy.

J. An actuarial memorandum should be constructed documenting the methodology and assumptions upon which the required capital for the variable annuities and similar products is determined. Since the starting point for the C-3 RBC calculation is the cash flow modeling used for the reserves, the documentation requirements for reserves (VM-31) should be followed for the C-3 RBC. The reserve report may be incorporated by reference, with this C-3 RBC memorandum focused on identifying differences and items unique to the C-3 RBC process, or at the company’s option, the documentation of C-3 RBC may be merged into the VA Report with the differences for C-3 RBC discussed in a separate section of the Memorandum as outlined in VM-31.

These differences that would need to be identified either in the RBC Actuarial Memorandum or the VA Report will typically include:

* the basis for considering federal income tax,
* whether or not smoothing was applied, and the effect of that smoothing,
* whether or not a phase in was used, and the impact on the reported values,
* If the company elects to calculate CTEAT (98) using STR whereby the effect of Federal Income Tax is reflected in the projection of Accumulated Deficiencies, the company should still disclose in the memorandum the Total Asset Requirement and C-3 RBC that would be obtained if the company had elected to use the MTA method.
* Documentation of the alternative methodology calculations, if applicable, and
* Documentation of how the C-3 RBC values were allocated to the interest and market risk components.

This actuarial memorandum will be confidential and available to regulators upon request.
The lines on the alternative calculations page will not be required for **2019 or later**.

The total of all annual statement reserves representing exposure to C–3 risk on Line (36) should equal the following:

- Exhibit 5, Column 2, Line 0199999
- Page 2, Column 3, Line 6
- Exhibit 5, Column 2, Line 0299999
- Exhibit 5, Column 2, Line 0399999
- Exhibit 7, Column 1, Line 14
- Separate Accounts Page 3, Column 3, Line 1 plus Line 2 after deducting (a) funds in unitized separate accounts with no underlying guaranteed minimum return and no unreinsured guaranteed living benefits; (b) non-indexed separate accounts that are not cash flow tested with guarantees less than 4 percent; (c) non-cash-flow-tested experience rated pension reserves/liabilities; and (d) guaranteed indexed separate accounts using a Class II investment strategy.
- Non policyholder reserves reported on Exhibit 7
- Exhibit 5, Column 2, Line 0799997
- Schedule S, Part 1, Section 1, Column 12
- Schedule S, Part 3, Section 1, Column 14
Appendix 1 – Cash Flow Modeling for C-3 RBC

This appendix is applicable for all companies who do Cash Flow Modeling for C-3 RBC for Certain Annuities and Single Premium Life products.

The method of developing the C-3 component for these contracts is building on the work of the asset adequacy modeling, but using interest scenarios designed to help approximate the 95th percentile C-3 risk.

The C-3 component is to be calculated as the sum of four amounts, but subject to a minimum. The calculation is:

(a) For Certain Annuities or Single Premium Life Insurance products other than equity-indexed products and any variable products not valued using VM-21, whether written directly or assumed through reinsurance, that the company tests for asset adequacy analysis using cash flow testing, an actuary should calculate the C-3 requirement based on the same cash flow models and assumptions used and same “as-of” date as for asset adequacy, but with a different set of interest scenarios and a different measurement of results. A weighted average of a subset of the scenario-specific results is used to determine the C-3 requirement. The result is to be divided by $(1-\text{enacted maximum federal corporate income tax rate})$ to put it on a pre-tax basis for LR027 Interest Rate Risk and Market Risk Column (2) Line (33).

If the “as-of” date of this testing is not Dec. 31, the ratio of the C-3 requirement to reserves on the “as-of” date is applied to the year-end reserves, similarly grouped, to determine the year-end C-3 requirement for this category.

(b) Equity-indexed products are to use the existing C-3 RBC factors, not the results of cash flow testing.

(c) Variable annuities, including the fixed components of those products, are determined using the requirements for Line (37).

(d) For all other products (either non-cash-flow-tested or those outside the product scope defined above) the C-3 requirements are calculated using current existing C-3 RBC factors and instructions.

(e) For callable/pre-payable assets (including IOs and similar investments other than those used for testing in component a) above, the after-tax C-3 requirement is 50.0 percent of the excess, if any, of book/adjusted carrying value above current call price. The calculation is to be done on an asset-by-asset basis. For callable/pre-payable assets used for testing in component a) above as well as those used in C-3P2 testing, the C-3 factor requirement is zero.

The total C-3 component is the sum of (a), (b), (d) and (e), but not less than half the C-3 component based on current factors and instructions.

- For this C-3 calculation, “Certain Annuities” means products with the characteristics of deferred and immediate annuities, structured settlements, guaranteed separate accounts (excluding guaranteed indexed separate accounts following a Class II investment strategy) and GICs (including synthetic GICs and funding agreements). Debt incurred for funding an investment account is included if cash flow testing of the arrangement is required by the insurer’s state of domicile for asset adequacy analysis. Variable annuity products are not to be included, including guaranteed fixed options within such products, as they are separately tested under the requirements for Variable Annuities and Similar Products. See Appendix 1b for further discussion.

- The company may use either a standard 50 scenario set of interest rates or an alternative, but more conservative, 12 scenario set (for part a, above). It may use the smaller set for some products and the larger one for others. Details of the cash flow testing for C-3 RBC methodology are contained in Appendix 1a.
In order to allow time for the additional work effort, an estimated value is permitted for the year-end annual statement. For the RBC electronic filing, the actual results of the cash flow testing for C-3 RBC will be required. If the actual RBC value exceeds that estimated earlier in the blanks filing by more than 5 percent, or if the actual value triggers regulatory action, a revised filing with the NAIC and the state of domicile is required by June 15; otherwise, re-filing is permitted but not required.

The risk-based capital submission is to be accompanied by a statement from the appointed actuary certifying that in his or her opinion the assumptions used for these calculations are not unreasonable for the products, scenarios and purpose being tested. This C-3 Assumption Statement is required from the appointed actuary even if the cash flow testing for C-3 RBC is done by a different actuary.

The cash flow testing used for this purpose will use assumptions as to cash flows, assets associated with tested liabilities, future investment strategy, rate spreads, “as-of” date and how negative cash flow is reflected consistent with those used for cash flow testing for asset adequacy purposes (except that if negative cash flow is modeled by borrowing, the actuary needs to make sure that the amount and cost of borrowing are reasonable for that particular scenario of the C-3 testing). The other differences are the interest scenarios assumptions and how the results are used.

It is important that assumptions be reviewed for reasonableness under the severe scenarios used for C-3 RBC cash flow testing. The assumptions used for cash flow testing may need to be modified so as to produce reasonable results in severe scenarios.

The actuary must also ensure that the cash flow testing used for the 50 or 12 scenarios does not double-count cash flow offsets to the interest rate risks. That is, that the calculations do not reduce C-3 and another RBC component for the same margins. For example, certain reserve margins on some guaranteed separate account products serve an AVR role and are credited against the C-1o requirement. To that degree, these margins should be removed from the reserve used for C-3 RBC cash flow testing.
Appendix 1a – Cash Flow Modeling for C-3 RBC Methodology

General Approach

1. The underlying asset and liability model(s) are those used for year-end Asset Adequacy Analysis cash flow testing, or a consistent model.

2. Run the scenarios (12 or 50) produced from the interest-rate scenario generator.

3. The statutory capital and surplus position, S(t), should be captured for every scenario for each calendar year-end of the testing horizon. The capital and surplus position is equal to statutory assets less statutory liabilities for the portfolio.

4. For each scenario, the C-3 measure is the most negative of the series of present values S(t)*pv(t), where pv(t) is the accumulated discount factor for t years using 105 percent of the after-tax one-year Treasury rates for that scenario. In other words:

 \[pv(t) = \prod_{i=1}^{t} 1/(1+i) \]

5. Rank the scenario-specific C-3 measures in descending order, with scenario number 1’s measure being the positive capital amount needed to equal the very worst present value measure.

6. Taking the weighted average of a subset of the scenario specific C-3 scores derives the final C-3 after-tax factor.

 (a) For the 50 scenario set, the C-3 scores are multiplied by the following series of weights:

<table>
<thead>
<tr>
<th>Scenario Rank</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.02</td>
</tr>
<tr>
<td>16</td>
<td>0.04</td>
</tr>
<tr>
<td>15</td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>0.08</td>
</tr>
<tr>
<td>13</td>
<td>0.10</td>
</tr>
<tr>
<td>12</td>
<td>0.12</td>
</tr>
<tr>
<td>11</td>
<td>0.16</td>
</tr>
<tr>
<td>10</td>
<td>0.12</td>
</tr>
<tr>
<td>9</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

 The sum of these products is the C-3 charge for the product.

 (b) For the 12 scenario set, the charge is calculated as the average of the C-3 scores ranked 2 and 3, but cannot be less than half the worst scenario score.

7. If multiple asset/liability portfolios are tested and aggregated, an aggregate C-3 charge can be derived by first summing the S(t)’s from all the portfolios (by scenario) and then following Steps 2 through 6 above. An alternative method is to calculate the C-3 score by scenario for each product, sum them by scenario, then order them by rank and apply the above weights.
Single Scenario C-3 Measurement Considerations

1. GENERAL METHOD - This approach incorporates interim values, consistent with the approach used for bond, mortgage and mortality RBC factor quantification. The approach establishes the risk measure in terms of an absolute level of risk (e.g., solvency) rather than volatility around an expected level of risk. It also recognizes reserve conservatism, to the degree that such conservatism hasn’t been used elsewhere.

2. INITIAL ASSETS = RESERVES - Consistent with appointed actuary practice, the cash flow models are run with initial assets equal to reserves; that is, no surplus assets are used.

3. AVR - Existing AVR-related assets should not be included in the initial assets used in the C-3 modeling. These assets are available for future credit loss deviations over and above expected credit losses. These deviations are covered by C-1 risk capital. Similarly, future AVR contributions should not be modeled. However, the expected credit losses should be in the cash flow modeling. (Deviations from expected are covered by both the AVR and the C-1 risk capital.)

4. IMR - IMR assets should be used for C-3 modeling. (Also see #9 – Disinvestment Strategy.)

5. INTERIM MEASURE - Retained statutory surplus (i.e., statutory assets less statutory liabilities) is used as the year-to-year interim measure.

6. TESTING HORIZONS - Surplus adequacy should be tested over a period that extends to a point at which contributions to surplus on a closed block are immaterial in relationship to the analysis. If some products are being cash flow tested for Asset Adequacy Analysis over a longer period than the 30 years generated by the interest-rate scenario generator, the scenario rates should be held constant at the year 30 level for all future years. A consistent testing horizon is important for all lines if the C-3 results from different lines of business are aggregated.

7. TAX TREATMENT - The tax treatment should be consistent with that used in Asset Adequacy Analysis. Appropriate disclosure of tax assumptions may be required.

8. REINVESTMENT STRATEGY - The reinvestment strategy should be that used in Asset Adequacy Analysis modeling.

9. DISINVESTMENT STRATEGY - In general, negative cash flows should be handled just as they are in the Asset Adequacy Analysis. The one caveat is, since the RBC scenarios are more severe, models that depend on borrowing need to be reviewed to be confident that loans in the necessary volume are likely to be available under these circumstances at a rate consistent with the model’s assumptions. If not, adjustments need to be made.

 If negative cash flows are handled by selling assets, then appropriate modeling of contributions and withdrawals to the IMR need to be reflected in the modeling.

10. STATUTORY PROFITS RETAINED - The measure is based on a profits retained model, anticipating that statutory net income earned one period is retained to support capital requirements in future periods. In other words, no stockholder dividends are withdrawn, but policyholder dividends, excess interest, declared rates, etc., are modeled realistically and assumed, paid or credited.

11. LIABILITY and ASSET ASSUMPTIONS - The liability and asset assumptions should be those used in Asset Adequacy Analysis modeling. Disclosure of these assumptions may be required.

12. SENSITIVITY TESTING - Key assumptions shall be stress tested (e.g., lapses increased by 50 percent) to evaluate sensitivity of the resulting C-3 requirement to the various assumptions made by the actuary. Disclosure of these results may be required.
Appendix 1b - Frequently Asked Questions for Cash Flow Modeling for C-3 RBC

1. Where can the scenario generator be found? What is needed to run it?

The scenario generator is a Microsoft Excel spreadsheet. By entering the Treasury yield curve at the date for which the testing is done, it will generate the sets of 50 or 12 scenarios. It requires Windows 95 or higher. This spreadsheet and instructions are available on the NAIC Web site at (http://www.naic.org/cmte_e_lrbc.htm). It is also available on diskette from the American Academy of Actuaries.

2. The results may include sensitive information in some instances. How can it be kept confidential?

As provided for in Section 8 of the Risk-Based Capital (RBC) For Insurers Model Act, all information in support of and provided in the RBC reports (to the extent the information therein is not required to be set forth in a publicly available annual statement schedule), with respect to any domestic or foreign insurer, which is filed with the commissioner constitute information that might be damaging to the insurer if made available to its competitors, and therefore shall be kept confidential by the commissioner. This information shall not be made public or be subject to subpoena, other than by the commissioner and then only for the purpose of enforcement actions taken by the commissioner under the Risk-Based Capital (RBC) For Insurers Model Act or any other provision of the insurance laws of the state.

3. The definition of the annuities category talks about “debt incurred for funding an investment account…” Could you give a specific description of what is intended?

One example is a situation where an insurer is borrowing under an advance agreement with a federal home loan bank, under which agreement collateral, on a current fair value basis, is required to be maintained with the bank. This arrangement has many of the characteristics of a GIC, but is classified as debt.

4. The instructions specify that assumptions consistent with those used for Asset Adequacy Analysis testing be used for C-3 RBC, but my company cash flow tests a combination of universal life and annuities for that analysis and using the same assumptions will produce incorrect results. What was intended in this situation?

Where this situation exists, assumptions should be used for the risk-based capital work that are consistent with those used for the Asset Adequacy Cash Flow Testing. In other words, the assumptions used should be appropriate to the annuity component being evaluated for RBC and consistent with the overall assumption set used for Asset Adequacy Analysis.
Appendix 2 – Alternative Method for GMDB Risks

{Drafting Note: the following is copied from the American Academy of Actuaries June 2005 Report to the NAIC Capital Adequacy Task Force This Appendix describes the Alternative Method for GMDB exposure in significant detail; how it is to be applied and how the factors were developed. Factor tables have been developed using the Conditional Tail Expectation (“CTE”) risk measure at two confidence levels: 65% and 90%. The latter is determined on an “after tax” basis and is required for the RBC C3 Phase II standard for C-3 RBC. The former is a pre-tax calculation and is referenced in the Valuation Manual, VM-21 for reserves.}

General

1. It is expected that the Alternative Method (“AltM”) will be applied on a policy-by-policy basis (i.e., seriatim). If the company adopts a cell-based approach, only materially similar contracts should be grouped together. Specifically, all policies comprising a “cell” must display substantially similar characteristics for those attributes expected to affect risk-based capital (e.g., definition of guaranteed benefits, attained age, policy duration, years-to-maturity, market-to-guaranteed value, asset mix, etc.).

2. The Alternative Method determines the TAR as the sum of the Cash Surrender Value and the following three (3) provisions, collectively referred to as the Additional Asset Requirement (“AAR”):
 - Provision for amortization of the outstanding (unamortized) surrender charges –“Charge Amortization” or “CA”;
 - Provision for fixed dollar expenses/costs net of fixed dollar revenue – “Fixed Expenses” or “FE”; and
 - Provision for claims (in excess of account value) under the guaranteed benefits net of available spread-based revenue (“margin offset”) – “Guaranteed Cost” or “GC”.

All of these components reflect the impact of income taxes and are explained in more detail later in this Appendix.

The Risk Based Capital amount (C-3 RBC) is determined in aggregate for the block of policies as the TAR less the reserve determined based on Section 7 of VM-21.

Note the following regarding income taxes:

The company determines the CA and FE amounts by projecting the inforce data and incorporating a 21% tax rate and a post-tax discount rate of 4.54% (= 5.75% x [1-21%]).
In determining the GC amounts, a “look-up” function is used which provides a GMDB Cost Factor “f” and Base Margin Offset Factor “g”. These factors ("f" and “g”) represent CTE90 factors on a post-tax basis where a 35% tax rates and 3.74% (= 5.75% x (1-35%)) discount rate has been used. The company needs to multiply these factors by (.79/.65) to adjust the factors for a 21% tax rate basis. It is noted that this adjustment overstates the impact of the lower tax rate as the impact of the higher discount rate has not been reflected.

3. The total AAR (in excess of cash surrender value) is the sum of the AAR calculations for each policy or cell. The result for any given policy (cell) may be negative, zero or positive.

4. For variable annuities without guarantees, the Alternative Method for capital uses the methodology which applied previously to all variable annuities. The charge is 11 percent of the difference between fund balance and cash surrender value if the current surrender charge is based on fund balance. If the current surrender charge is based on fund contributions, the charge is 2.4 percent of the difference for those contracts for which the fund balance exceeds the sum of premiums less withdrawals and 11 percent for those for which that is not the case. In all cases, the result is to be multiplied by 0.79 to adjust for Federal Income Tax. For in-scope contracts, such as many payout annuities with no cash surrender value and no performance guarantees, there is no capital charge.

5. For variable annuities with death benefit guarantees, the AAR for a given policy is equal to: \(R \times (CA + FE) + GC \) where:

\[
\begin{align*}
CA & \text{ (Charge Amortization)} = \text{ Provision for amortization of the outstanding (unamortized) surrender charges} \\
FE & \text{ (Fixed Expense)} = \text{ Provision for fixed dollar expenses/costs net of fixed dollar revenue} \\
GC & \text{ (Guaranteed Cost)} = \text{ Provision for claims (in excess of account value) under the guaranteed benefits net of available spread-based revenue (“margin offset”)}
\end{align*}
\]

The components \(CA, FE \) and \(GC \) are calculated separately. \(CA \) and \(FE \) are defined by deterministic “single-scenario” calculations which account for asset growth, interest, inflation and tax at prescribed rates. Mortality is ignored. However, the actuary determines the appropriate “prudent best estimate” lapses/withdrawal rates for the calculations. The components \(CA, FE \) and \(GC \) may be positive, zero or negative. \(R \) is a “scaling factor” that depends on certain risk attributes \(\tilde{\theta} \) for the policy and the product portfolio.

6. The “Alternative Method” factors and formulas for GMDB risks (component \(GC \)) have been developed from stochastic testing using the 10,000 “Pre-packaged” scenarios (March 2005). The pre-packaged scenarios have been fully documented under separate cover – see http://www.actuary.org/pdf/life/c3supp_march05.pdf at the American Academy of Actuaries’ website.
7. The model assumptions for the AltM Factors (component GC) are documented in the section of this Appendix entitled Component GC.

8. The table of GC factors that has been developed assumes male mortality at 100% of the MGDB 94 ALB table, and uses a 5-year age setback for female annuitants. Companies using the Alternative Method may use these factors, or may use the procedure described in Methodology Note C3-05 in the report “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products Presented by the American Academy of Actuaries’ Life Capital Adequacy Subcommittee to the National Association of Insurance Commissioners’ Capital Adequacy (E) Task Force (June 2005)” to adjust for the actuary’s Prudent Best Estimate of mortality. If the company does not have a Prudent Best Estimate mortality assumption, the company may use the procedure described in Methodology Note C3-05 to adjust to the 2012 IAM as modified in VM-21 Section 11.C. Once a company uses the modified method for a block of business, the option to use the unadjusted table is no longer available for that part of its business.

9. There are five (5) major steps in using the GC factors to determine the “GC” component of the AAR for a given policy/cell:
 a) Classifying the asset exposure;
 b) Determining the risk attributes;
 c) Retrieving the appropriate nodes from the factor grid;
 d) Interpolating the nodal factors, where applicable (optional);
 e) Applying the factors to the policy values.

Categorizing the asset value for the given policy or cell involves mapping the entire exposure to one of the eight (8) prescribed “fund classes”. Alternative Method factors are provided for each asset class.

The second step requires the company to determine (or derive) the appropriate attributes for the given policy or cell. These attributes are needed to calculate the required values and access the factor tables:

- Product form (“Guarantee Definition”), P.
- Adjustment to guaranteed value upon partial withdrawal (“GMDB Adjustment”), A.
- Fund class, F.
- Attained age of the annuitant, X.
- Policy duration since issue, D.
- Ratio of account value to guaranteed value, ϕ.
- Total account charges, MER.

Other required policy values include:

- Account value, AV.
- Current guaranteed minimum death benefit, GMDB.
- Net deposit value (sum of deposits less sum of withdrawals), NetDeposits\(^1\).
- Net spread available to fund guaranteed benefits (“margin offset”), \(\alpha\).

The next steps – retrieving the appropriate nodes from the factor grid and interpolation – are explained in the section entitled Component GC of this Appendix. Tools are provided to assist the company in these efforts (see Appendix 9), but their use is not mandatory. This documentation is sufficiently detailed to permit the company to write its own lookup and extraction routines. A calculation example to demonstrate the application of the various component factors to sample policy values is shown in the section Component GC of this Appendix.

10. The total account charges should include all amounts assessed against policyholder accounts, expressed as a level spread per year (in basis points). This quantity is called the Management Expense Ratio (“MER”) and is defined as the average amount (in dollars) charged against policyholder funds in a given year divided by average account value. Normally, the MER would vary by fund class and be the sum of investment management fees, mortality & expense charges, guarantee fees/risk premiums, etc. The spread available to fund the GMDB costs (“margin offset”, denoted by \(\alpha\)) should be net of spread-based costs and expenses (e.g., net of maintenance expenses, investment management fees, trail commissions, etc.), but may be increased for Revenue Sharing as can be reflected in modeling (i.e., had the Alternative Method not been elected) by adhering to the requirements set forth in section 6 of the Modeling Methodology. The section of this Appendix on Component GC describes how to determine MER and \(\alpha\). ‘Time-to-maturity’ is uniquely defined in the factor modeling by \(T = 95 - X\). (This assumes an assumed maturity age of 95 and a current attained age of \(X\).) Net deposits are used in determining benefit caps under the GMDB Roll-up and Enhanced Death Benefit (“EDB”) designs.

11. The GMDB definition for a given policy/cell may not exactly correspond to those provided. In some cases, it may be reasonable to use the factors/formulas for a different product form (e.g., for a “roll-up” GMDB policy near or beyond the maximum reset age or amount, the company should use the “return-of-premium” GMDB factors/formulas, possibly adjusting the guaranteed value to reflect further resets, if any). In other cases, the company might determine the RBC based on two different guarantee definitions and interpolate the results to obtain an appropriate value for the given policy/cell. However, if the policy form (definition of the guaranteed benefit) is sufficiently different from those provided and there is no practical or obvious way to obtain a good result from the prescribed factors/formulas, the company must select one of the following options:

\(^1\) Net deposits are required only for certain policy forms (e.g., when the guaranteed benefit is capped as a multiple of net policy contributions).
a) Model the “C3 Phase II RBC” using stochastic projections according to the approved methodology;
b) Select factors/formulas from the prescribed set such that the values obtained conservatively estimate the required capital; or
c) Calculate company-specific factors or adjustments to the published factors based on stochastic testing of its actual business. This option is described more fully in the section of this Appendix on Component GC.

12. The actuary must decide if existing reinsurance arrangements can be accommodated by a straight-forward adjustment to the factors and formulas (e.g., quota-share reinsurance without caps, floors or sliding scales would normally be reflected by a simple pro-rata adjustment to the “gross” GC results). For more complicated forms of reinsurance, the company will need to justify any adjustments or approximations by stochastic modeling. However, this modeling need not be performed on the whole portfolio, but can be undertaken on an appropriate set of representative policies. See the section of this Appendix on Component GC.

Component CA

Component CA provides for the amortization of the unamortized surrender charges using the actual surrender charge schedule applicable to the policy. Over time, the surrender charge is reduced and a portion of the charges in the policy are needed to fund the resulting increase in surrender value. This component can be interpreted as the “amount needed to amortize the unamortized surrender charge allowance for the persisting policies plus an implied borrowing cost”. By definition, the amortization for non-persisting lives in each time period is exactly offset by the collected surrender charge revenue (ignoring timing differences and any waiver upon death). The company must project the unamortized balance to the end of the surrender charge period and discount the year-by-year amortization under the following assumptions. All calculations should reflect the impact of income taxes.

- Net asset return (i.e., after fees) as shown in Table 1 below. These rates roughly equate to an annualized 5th percentile return over a 10-year horizon. The 10 year horizon was selected as a reasonable compromise between the length of a typical surrender charge period and the longer testing period usually needed to capture all the costs on "more expensive" portfolios (i.e., lower available spread, lower AV/GV ratio, older ages, etc.). Note, however, that it may not be necessary to use these returns if surrender charges are a function of deposits/premiums.

- Income tax and discount rates (after-tax) as defined in Table 9 of this Appendix.

- The “Dynamic Lapse Multiplier” calculated at the valuation date (a function of Account Value (AV) ÷ Guaranteed Value (GV) ratio) is assumed to apply in each future year. This factor adjusts the lapse rate to reflect the antiselection present when the guarantee is in-the-money. Lapse rates may be lower when the guarantees have more value.

- Surrender charges and free partial withdrawal provisions should be reflected as per the contract specifications.

2 A 5th percentile return is consistent with the CTE90 risk measure adopted in the C3 Phase II RBC methodology.
- “Prudent best estimate” lapse and withdrawal rates. Rates may vary according to the attributes of the business being valued, including, but not limited to, attained age, policy duration, etc.
- For simplicity, mortality may be ignored in the calculations.

Unlike the GC component, which requires the actuary to map the entire contract exposure to a single “equivalent” asset class, the CA calculation separately projects each fund (as mapped to the 8 prescribed categories) using the net asset returns in Table 2-1.

Table 2-1: Net Asset Returns for “CA” Component

<table>
<thead>
<tr>
<th>Asset Class/Fund</th>
<th>Net Annualized Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Account</td>
<td>Guaranteed Rate</td>
</tr>
<tr>
<td>Money Market and Fixed Income</td>
<td>0%</td>
</tr>
<tr>
<td>Balanced</td>
<td>-1%</td>
</tr>
<tr>
<td>Diversified Equity</td>
<td>-2%</td>
</tr>
<tr>
<td>Diversified International Equity</td>
<td>-3%</td>
</tr>
<tr>
<td>Intermediate Risk Equity</td>
<td>-5%</td>
</tr>
<tr>
<td>Aggressive or Exotic Equity</td>
<td>-8%</td>
</tr>
</tbody>
</table>

Component FE

Component FE establishes a provision for fixed dollar costs (i.e., allocated costs, including overhead and those expenses defined on a “per policy” basis) less any fixed dollar revenue (e.g., annual administrative charges or policy fees). The company must project fixed expenses net of any “fixed revenue” to the earlier of contract maturity or 30 years, and discount the year-by-year amounts under the following assumptions. All calculations should reflect the impact of income taxes.

- Income tax and discount rates (after-tax) as defined in Table 9 of this Appendix.
- The “Dynamic Lapse Multiplier” calculated at the valuation date (a function of MV÷GV ratio) is assumed to apply in each future year. This factor adjusts the lapse rate to reflect the antiselection present when the guarantee is in-the-money. Lapse rates may be lower when the guarantees have more value.
- Per policy expenses are assumed to grow with inflation starting in the second projection year. The ultimate inflation rate of 3% per annum is reached in the 8th year after the valuation date. The company must grade linearly from the current inflation rate ("CIR") to the ultimate rate. The CIR is the higher of 3% and the inflation rate assumed for expenses in the company’s most recent asset adequacy analysis for similar business.

- “Prudent best estimate” for policy termination (i.e., total surrender). Rates may vary according to the attributes of the business being valued, including, but not limited to, attained age, policy duration, etc. Partial withdrawals should be ignored as they do not affect survivorship.

- For simplicity, mortality may be ignored in the calculations.

Component GC

The general format for \(GC \) may be written as: \(GC = GV \times f(\bar{\theta}) - AV \times g(\bar{\theta}) \times h(\bar{\theta}) \) where \(GV \) = current guaranteed minimum death benefit, \(AV \) = current account value and \(\frac{\alpha}{\hat{\alpha}} \times g(\bar{\theta}) \). The functions \(f(\circ), g(\circ), \), and \(h(\circ) \) depend on the risk attributes of the policy \(\bar{\theta} \) and product portfolio \(\hat{\theta} \). \(h(\circ) = R \) was introduced in the “General” section as a “scaling factor”. \(\alpha \) is the company-determined net spread (“margin offset”) available to fund the guaranteed benefits and \(\hat{\alpha} = 100 \) basis points is the margin offset assumed in the development of the “Base” tabular factors. The functions \(f(\circ), g(\circ), \), and \(h(\circ) \) are more fully described later in this section.

Rearranging terms for \(GC \), we have \(GC = f(\bar{\theta}) \times [GV - AV \times z(\bar{\theta})] \). Admittedly, \(z(\bar{\theta}) \) is a complicated function that depends on the risk attribute sets \(\bar{\theta} \) and \(\hat{\theta} \), but conceptually we can view \(AV \times z(\bar{\theta}) \) as a shock to the current account value (in anticipation of the adverse investment return scenarios that typically comprise the CTE(90) risk measure for the AAR) so that the term in the square brackets is a “modified net amount at risk”. Accordingly, \(f(\bar{\theta}) \) can be loosely interpreted as a factor that adjusts for interest (i.e., discounting) and mortality (i.e., the probability of the annuitant dying).

In practice, \(f(\circ), g(\circ), \), and \(h(\circ) \) are not functions in the typical sense, but values interpolated from the factor grid. The factor grid is a large pre-computed table developed from stochastic modeling for a wide array of combinations of the risk attribute set. The risk attribute set is defined by those policy and/or product portfolio characteristics that affect the risk profile (exposure) of the business: attained age, policy duration, AV/GV ratio, fund class, etc.

Fund Categorization

The following criteria should be used to select the appropriate factors, parameters and formulas for the exposure represented by a specified guaranteed benefit. When available, the volatility of the long-term annualized total return for the fund(s) – or an appropriate benchmark – should conform to the limits presented. This calculation should be made over a reasonably long period, such as 25 to 30 years.

Where data for the fund or benchmark are too sparse or unreliable, the fund exposure should be moved to the next higher volatility class than otherwise indicated. In reviewing the asset classifications, care should be taken to reflect any additional volatility of returns added by the presence of currency risk, liquidity (bid-ask) effects, short selling and speculative positions.
All exposures/funds must be categorized into one of the following eight (8) asset classes:

1. Fixed Account
2. Money Market
3. Fixed Income
4. Balanced
5. Diversified Equity
6. Diversified International Equity
7. Intermediate Risk Equity
8. Aggressive or Exotic Equity

Fixed Account. The fund is credited interest at guaranteed rates for a specified term or according to a ‘portfolio rate’ or ‘benchmark’ index. The funds offer a minimum positive guaranteed rate that is periodically adjusted according to company policy and market conditions.

Money Market/Short-Term. The fund is invested in money market instruments with an average remaining term-to-maturity of less than 365 days.

Fixed Income. The fund is invested primarily in investment grade fixed income securities. Up to 25% of the fund within this class may be invested in diversified equities or high-yield bonds. The expected volatility of the fund returns will be lower than the Balanced fund class.

Balanced. This class is a combination of fixed income securities with a larger equity component. The fixed income component should exceed 25% of the portfolio and may include high yield bonds as long as the total long-term volatility of the fund does not exceed the limits noted below. Additionally, any aggressive or ‘specialized’ equity component should not exceed one-third (33.3%) of the total equities held. Should the fund violate either of these constraints, it should be categorized as an equity fund. These funds usually have a long-term volatility in the range of 8% – 13%.

Diversified Equity. The fund is invested in a broad-based mix of U.S. and foreign equities. The foreign equity component (maximum 25% of total holdings) must be comprised of liquid securities in well-developed markets. Funds in this category would exhibit long-term volatility comparable to that of the S&P500. These funds should usually have a long-term volatility in the range of 13% – 18%.

Diversified International Equity. The fund is similar to the Diversified Equity class, except that the majority of fund holdings are in foreign securities. These funds should usually have a long-term volatility in the range of 14% – 19%.
Intermediate Risk Equity. The fund has a mix of characteristics from both the Diversified and Aggressive Equity Classes. These funds have a long-term volatility in the range of 19% – 25%.

Aggressive or Exotic Equity. This class comprises more volatile funds where risk can arise from: (a) underdeveloped markets, (b) uncertain markets, (c) high volatility of returns, (d) narrow focus (e.g., specific market sector), etc. The fund (or market benchmark) either does not have sufficient history to allow for the calculation of a long-term expected volatility, or the volatility is very high. This class would be used whenever the long-term expected annualized volatility is indeterminable or exceeds 25%.

THE SELECTION OF AN APPROPRIATE INVESTMENT TYPE SHOULD BE DONE AT THE LEVEL FOR WHICH THE GUARANTEE APPLIES. FOR GUARANTEES APPLYING ON A DEPOSIT-BY-DEPOSIT BASIS, THE FUND SELECTION IS STRAIGHTFORWARD. HOWEVER, WHERE THE GUARANTEE APPLIES ACROSS DEPOSITS OR FOR AN ENTIRE CONTRACT, THE APPROACH CAN BE MORE COMPLICATED. IN SUCH INSTANCES, THE APPROACH IS TO IDENTIFY FOR EACH POLICY WHERE THE “GROUPED FUND HOLDINGS” FIT WITHIN THE CATEGORIES LISTED AND TO CLASSIFY THE ASSOCIATED ASSETS ON THIS BASIS.

A seriatim process is used to identify the “grouped fund holdings”, to assess the risk profile of the current fund holdings (possibly calculating the expected long-term volatility of the funds held with reference to the indicated market proxies), and to classify the entire “asset exposure” into one of the specified choices. Here, “asset exposure” refers to the underlying assets (separate and/or general account investment options) on which the guarantee will be determined. For example, if the guarantee applies separately for each deposit year within the contract, then the classification process would be applied separately for the exposure of each deposit year.

In summary, mapping the benefit exposure (i.e., the asset exposure that applies to the calculation of the guaranteed minimum death benefits) to one of the prescribed asset classes is a multi-step process:

1. Map each separate and/or general account investment option to one of the prescribed asset classes. For some funds, this mapping will be obvious, but for others it will involve a review of the fund’s investment policy, performance benchmarks, composition and expected long-term volatility.

2. Combine the mapped exposure to determine the expected long-term “volatility of current fund holdings”. This will require a calculation based on the expected long-term volatilities for each fund and the correlations between the prescribed asset classes as given in Table 2-2.

3. Evaluate the asset composition and expected volatility (as calculated in step 2) of current holdings to determine the single asset class that best represents the exposure, with due consideration to the constraints and guidelines presented earlier in this section.
In step 1., the company should use the fund’s actual experience (i.e., historical performance, inclusive of reinvestment) only as a guide in determining the expected long-term volatility. Due to limited data and changes in investment objectives, style and/or management (e.g., fund mergers, revised investment policy, different fund managers, etc.), the company may need to give more weight to the expected long-term volatility of the fund’s benchmarks. In general, the company should exercise caution and not be overly optimistic in assuming that future returns will consistently be less volatile than the underlying markets.

In step 2., the company should calculate the “volatility of current fund holdings” (\(\sigma\) for the exposure being categorized) by the following formula using the volatilities and correlations in Table 2.

\[
\sigma = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} W_i W_j \rho_{ij} \sigma_i \sigma_j}
\]

where \(W_i = \frac{AV_i}{\sum_k AV_k}\) is the relative value of fund \(i\) expressed as a proportion of total contract value, \(\rho_{ij}\) is the correlation between asset classes \(i\) and \(j\) and \(\sigma_i\) is the volatility of asset class \(i\) (see Table 2). An example is provided at the end of this section.
Table 2-2: Volatilities and Correlations for Prescribed Asset Classes

<table>
<thead>
<tr>
<th>ANNUAL VOLATILITY</th>
<th>FIXED ACCOUNT</th>
<th>MONEY MARKET</th>
<th>FIXED INCOME</th>
<th>BALANCED</th>
<th>DIVERSE EQUITY</th>
<th>INTL EQUITY</th>
<th>INTERM EQUITY</th>
<th>AGGR EQUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0%</td>
<td>1</td>
<td>0.50</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.5%</td>
<td>0.50</td>
<td>1</td>
<td>0.20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.0%</td>
<td>0.15</td>
<td>0.20</td>
<td>1</td>
<td>0.30</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>10.0%</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>1</td>
<td>0.95</td>
<td>0.60</td>
<td>0.75</td>
<td>0.60</td>
</tr>
<tr>
<td>15.5%</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>0.95</td>
<td>1</td>
<td>0.60</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td>17.5%</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>0.60</td>
<td>0.60</td>
<td>1</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>21.5%</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>0.75</td>
<td>0.80</td>
<td>0.50</td>
<td>1</td>
<td>0.70</td>
</tr>
<tr>
<td>26.0%</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.60</td>
<td>0.70</td>
<td>0.60</td>
<td>0.70</td>
<td>1</td>
</tr>
</tbody>
</table>
As an example, suppose three funds (Fixed Income, diversified U.S. Equity and Aggressive Equity) are offered to clients on a product with a contract level guarantee (i.e., across all funds held within the policy). The current fund holdings (in dollars) for five sample contracts are shown in Table 2-3.

TABLE 2-3: FUND CATEGORIZATION EXAMPLE

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV Fund X (Fixed Income):</td>
<td>5,000</td>
<td>4,000</td>
<td>8,000</td>
<td>-</td>
<td>5,000</td>
</tr>
<tr>
<td>MV Fund Y (Diversified Equity):</td>
<td>9,000</td>
<td>7,000</td>
<td>2,000</td>
<td>5,000</td>
<td>-</td>
</tr>
<tr>
<td>MV Fund Z (Aggressive Equity):</td>
<td>1,000</td>
<td>4,000</td>
<td>-</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Total Market Value:</td>
<td>15,000</td>
<td>15,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Total Equity Market Value:</td>
<td>10,000</td>
<td>11,000</td>
<td>2,000</td>
<td>10,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Fixed Income % (A):</td>
<td>33%</td>
<td>27%</td>
<td>80%</td>
<td>0%</td>
<td>50%</td>
</tr>
<tr>
<td>Fixed Income Test (A>75%):</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Aggressive % of Equity (B):</td>
<td>10%</td>
<td>36%</td>
<td>n/a</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Balanced Test (A>25% & B<33.3%):</td>
<td>Yes</td>
<td>No</td>
<td>n/a</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Volatility of Current Fund Holdings:</td>
<td>10.9%</td>
<td>13.2%</td>
<td>5.3%</td>
<td>19.2%</td>
<td>13.4%</td>
</tr>
<tr>
<td>Fund Classification:</td>
<td>Balanced</td>
<td>Diversified*</td>
<td>Fixed Income</td>
<td>Intermediate</td>
<td>Diversified</td>
</tr>
</tbody>
</table>

* Although the volatility suggests “Balanced Fund”, the Balanced Fund criteria were not met. Therefore, this ‘exposure’ is moved “up” to Diversified Equity. For those funds classified as Diversified Equity, additional analysis would be required to assess whether they should be instead designated as “Diversified International Equity”.

As an example, the “Volatility of Current Fund Holdings” for policy #1 is calculated as $\sqrt{A + B}$ where:

$$A = \left(\frac{5}{15} \times 0.05 \right)^2 + \left(\frac{9}{15} \times 0.155 \right)^2 + \left(\frac{1}{15} \times 0.26 \right)^2$$

$$B = 2 \cdot \left(\frac{5}{15} \cdot \frac{9}{15} \cdot 0.1 \times 0.05 \times 0.155 \right) + 2 \cdot \left(\frac{5}{15} \cdot \frac{1}{15} \cdot 0.05 \times 0.05 \times 0.26 \right) + 2 \cdot \left(\frac{9}{15} \cdot \frac{1}{15} \cdot 0.7 \times 0.155 \times 0.26 \right)$$

So the volatility for contract #1 = $\sqrt{0.0092 + 0.0026} = 0.109$ or 10.9%.
Derivation of Total Equivalent Account Charges (MER) and Margin Offset (α)

The total equivalent account charge (“MER”) is meant to capture all amounts that are deducted from policyholder funds, not only those that are commonly expressed as spread-based fees. The MER, expressed as an equivalent annual basis point charge against account value, should include (but not be limited to) the following: investment management fees, mortality & expense charges, administrative loads, policy fees and risk premiums. In light of the foregoing, it may be necessary to estimate the “equivalent MER” if there are fees withdrawn from policyholder accounts that are not expressed as basis point charges against account value.

The margin offset, α, represents the total amount available to fund the guaranteed benefit claims and amortization of the unamortized surrender charge allowance after considering most other policy expenses (including overhead). The margin offset, expressed as an equivalent annual basis point charge against account value, may include the effect of Revenue Sharing in the same manner as would be done for modeling as described in section 6 of the Modeling Methodology, except as may be thereby permitted, should be deemed “permanently available” in all future scenarios. However, the margin offset should not include per policy charges (e.g., annual policy fees) since these are included in FE. It is often helpful to interpret the margin offset as $\alpha = MER - X + RS$, where X is the sum of:

- Investment management expenses and advisory fees;
- Commissions, bonuses (dividends) and overrides;
- Maintenance expenses, other than those included in FE; and
- Unamortized acquisition costs not reflected in CA.

And RS is the Revenue Sharing to the extent permitted as described above.

Product Attributes and Factor Tables

The tabular approach for the GC component creates a multi-dimensional grid (array) by testing a very large number of combinations for the policy attributes. The results are expressed as factors. Given the seven (7) attributes for a policy (i.e., P, A, F, X, D, ϕ, MER), two factors are returned for $f(\phi)$ and $g(\phi)$. The factors are determined by looking up (based on a “key”) into the large, pre-computed multi-dimensional tables and using multi-dimensional linear interpolation.

The policy attributes for constructing the test cases and the lookup keys are given in Table 2-4.

As can be seen, there are $6 \times 2 \times 8 \times 8 \times 5 \times 7 \times 3 = 80,640$ “nodes” in the factor grid. Interpolation is only permitted across the last four (4) dimensions: Attained Age (X), Policy Duration (D), AV/GV Ratio (ϕ) and MER. The “MER Delta” is calculated based on the difference between the actual MER and that assumed in the factor testing (see Table 10), subject to a cap (floor) of 100 bps (-100 bps).
Functions are available to assist the company in applying the Alternative Method for GMDB risks. These functions perform the factor table lookups and associated multi-dimensional linear interpolations. Their use is not mandatory. Based on the information in this document, the company should be able to write its own lookup and retrieval routines. Interpolation in the factor tables is described further later in this section.

Table 2-4: Nodes of the Factor Grid

<table>
<thead>
<tr>
<th>Policy Attribute</th>
<th>Key : Possible Values & Description</th>
</tr>
</thead>
</table>
| Product Definition, \(P \). | 0 : 0 Return-of-premium.
 | 1 : 1 Roll-up (3% per annum).
 | 2 : 2 Roll-up (5% per annum).
 | 3 : 3 Maximum Anniversary Value (MAV).
 | 4 : 4 High of MAV and 5% Roll-up.
 | 5 : 5 Enhanced Death Benefit (excl. GMDB) |
| GV Adjustment Upon Partial Withdrawal, \(A \). | 0 : 0 Pro-rata by market value.
 | 1 : 1 Dollar-for-dollar. |
| Fund Class, \(F \). | 0 : 0 Fixed Account.
 | 1 : 1 Money Market.
 | 2 : 2 Fixed Income (Bond).
 | 3 : 3 Balanced Asset Allocation.
 | 4 : 4 Diversified Equity.
 | 5 : 5 International Equity.
 | 6 : 6 Intermediate Risk Equity.
 | 7 : 7 Aggressive / Exotic Equity. |
| Attained Age (Last Birthday), \(X \). | 0 : 35 4 : 65
 | 1 : 45 5 : 70
 | 2 : 55 6 : 75
 | 3 : 60 7 : 80
| Policy Duration (years-since-issue), \(D \). | 0 : 0.5
 | 1 : 3.5
 | 2 : 6.5
 | 3 : 9.5
<pre><code> | 4 : 12.5 |
</code></pre>
<table>
<thead>
<tr>
<th>Account Value-to-Guaranteed Value Ratio, ϕ</th>
<th>0 : 0.25</th>
<th>4 : 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 : 0.50</td>
<td>5 : 1.50</td>
</tr>
<tr>
<td></td>
<td>2 : 0.75</td>
<td>6 : 2.00</td>
</tr>
<tr>
<td></td>
<td>3 : 1.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annualized Account Charge Differential from Table 2-10 Assumptions (“MER Delta”)</th>
<th>0 : −100 bps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 : +0</td>
</tr>
<tr>
<td></td>
<td>2 : +100</td>
</tr>
</tbody>
</table>

A test case (i.e., a node on the multi-dimensional matrix of factors) can be uniquely identified by its key, which is the concatenation of the individual ‘policy attribute’ keys, prefixed by a leading ‘1’. For example, the key ‘12034121’ indicates the factor for a 5% roll-up GMDB, where the GV is adjusted pro-rata upon partial withdrawal, balanced asset allocation, attained age 65, policy duration 3.5, 75% AV/GV ratio and “equivalent” annualized fund based charges equal to the ‘base’ assumption (i.e., 250 bps p.a.).

The factors are contained in the file “C3-II GMDB Factors 100%Mort CTE(90) (2005-03-29).csv”, a comma-separated value text file. Each “row” represents the factors/parameters for a test policy as identified by the lookup keys shown in Table 2-4. Rows are terminated by new line and line feed characters.

Each row consists of 5 entries, described further below.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Case Identifier (Key)</td>
<td>Base GMDB Cost Factor</td>
<td>Base Margin Offset Factor</td>
<td>Scaling Adjustment (Intercept)</td>
<td>Scaling Adjustment (Slope)</td>
</tr>
</tbody>
</table>

GMDB Cost Factor. This is the term $f(\bar{\theta})$ in the formula for GC. The parameter set $\bar{\theta}$ is defined by $(P, A, F, X, D, \phi, MER)$. Here, ϕ is the AV/GV ratio for the benefit exposure (e.g., policy) under consideration. The values in the factor grid represent CTE(90) of the sample distribution\(^3\) for the present value of guaranteed benefit cash flows (in excess of account value) in all future years (i.e., to the earlier of contract maturity and 30 years), normalized by guaranteed value.

\(^3\) Technically, the sample distribution for “present value of net cost” = PV [GMDB claims] – PV [Margin Offset] was used to determine the scenario results that comprise the CTE90 risk measure. Hence, the “GMDB Cost Factors” and “Base Margin Offset Factors” are calculated from the same scenarios.
Base Margin Offset Factor. This is the term \(g(\bar{\theta}) \) in the formula for \(GC \). The parameter set \(\bar{\theta} \) is defined by \((P,A,F,X,D,\varphi, MER)\). Here, \(\varphi \) is the AV/GV ratio for the benefit exposure (e.g., policy) under consideration. The values in the factor grid represent CTE(90) of the sample distribution for the present value of margin offset cash flows in all future years (i.e., to the earlier of contract maturity and 30 years), normalized by account value. Note that the Base Margin Offset Factors assume \(\alpha = 100 \) basis points of “margin offset” (net spread available to fund the guaranteed benefits).

All else being equal, the margin offset \(\alpha \) has a profound effect on the resulting AAR. In comparing the Alternative Method against models for a variety of GMDB portfolios, it became clear that some adjustment factor would be required to “scale” the results to account for the diversification effects\(^4\) of attained age, policy duration and AV/GV ratio. The testing examined \(W_1 = \frac{\alpha}{MER} = 0.20 \) and \(W_2 = \frac{\alpha}{MER} = 0.60 \), where \(\alpha = \) available margin offset and \(MER = \) total “equivalent” account based charges, in order to understand the interaction between the margin ratio (“\(W \)”) and AAR.

Based on this analysis, the *Scaling Factor* is defined as:

\[
h(\bar{\theta}) = R = \beta_0 + \beta_1 \times W
\]

\(\beta_0 \) and \(\beta_1 \) are respectively the intercept and slope for the linear relationship, defined by the parameter set \(\bar{\theta} = (P,F,\bar{\varphi}) \). Here, \(\bar{\varphi} \) is 90% of the aggregate AV/GV for the *product form* (i.e., not for the individual policy or cell) under consideration. In calculating the *Scaling Factor* directly from this linear function, the margin ratio “\(W \)” must be constrained\(^5\) to the range [0.2,0.6].

It is important to remember that \(\bar{\varphi} = 0.90 \times \frac{\sum AV}{\sum GV} \) for the product form being evaluated (e.g., all 5% Roll-up policies). The 90% factor is meant to reflect the fact that the cost (payoff structure) for a basket of otherwise identical put options (e.g., GMDB) with varying degrees of in-the-moneyness (i.e., AV/GV ratios) is more left-skewed than the cost for a single put option at the “weighted average” asset-to-strike ratio.

To appreciate the foregoing comment, consider a basket of two 10-year European put options as shown in Table 2-5. These options are otherwise identical except for their “market-to-strike price” ratios. The option values are calculated assuming a 5% continuous risk-free rate and 16% annualized volatility. The combined option value of the portfolio is $9.00, equivalent to a single put option with \(S = $180.92 \) and \(X = $200 \). The market-to-strike (i.e., \(AV/GV \)) ratio is 0.905, which is less than the average \(AV/GV = 1 = \frac{\$75+$125}{\$100+$100} \).

\(^4\) By design, the Alternative Methodology does not directly capture the diversification benefits due to a varied asset profile and product mix. This is not a flaw of the methodology, but a consequence of the structure. Specific assumptions would be required to capture such diversification effects. Unfortunately, such assumptions might not be applicable to a given company and could grossly over-estimate the ensuing reduction in required capital.

\(^5\) The scaling factors were developed by testing “margin ratios” \(W_1 = 0.2 \) and \(W_2 = 0.6 \). Using values outside this range could give anomalous results.
Table 2-5: Equivalent Single European Put Option

<table>
<thead>
<tr>
<th></th>
<th>Equivalent Single Put Option</th>
<th>Put Option A (“in-the-money”)</th>
<th>Put Option B (“out-of-the-money”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market value (AV)</td>
<td>$180.92</td>
<td>$75</td>
<td>$125</td>
</tr>
<tr>
<td>Strike price (GV)</td>
<td>$200.00</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>Option Value</td>
<td>$9.00</td>
<td>$7.52</td>
<td>$1.48</td>
</tr>
</tbody>
</table>

Scaling Adjustment (Intercept). The scaling factor \(h(\hat{\theta}) = R \) is a linear function of \(W \), the ratio of margin offset to MER. This is the intercept \(\beta_0 \) that defines the line.

Scaling Adjustment (Slope). The scaling factor \(h(\hat{\theta}) = R \) is a linear function of \(W \), the ratio of margin offset to MER. This is the slope \(\beta_1 \) that defines the line.

Table 2-6 shows the “Base Cost” and “Base Margin Offset” values from the factor grid for some sample policies. As mentioned earlier, the Base Margin Offset factors assume 100 basis points of “available spread”. The “Margin Factors” are therefore scaled by the ratio \(\frac{\alpha}{100} \), where \(\alpha \) = the actual margin offset (in basis points per annum) for the policy being valued. Hence, the margin factor for the 7th sample policy is exactly half the factor for node 12044121 (the 4th sample policy in Table 6). That is, \(0.02160 = 0.5 \times 0.04319 \).
Table 2-6: Sample Nodes on the Factor Grid

<table>
<thead>
<tr>
<th>KEY</th>
<th>GMDB TYPE</th>
<th>GV ADJUST</th>
<th>FUND CLASS</th>
<th>AGE</th>
<th>POLICY DUR</th>
<th>AV/GV</th>
<th>MER (bps)</th>
<th>OFFSET</th>
<th>COST FACTOR</th>
<th>MARGIN FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10132031</td>
<td>ROP</td>
<td>$-for-$</td>
<td>Balanced Allocation</td>
<td>55</td>
<td>0.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.01073</td>
<td>0.04172</td>
</tr>
<tr>
<td>10133031</td>
<td>ROP</td>
<td>$-for-$</td>
<td>Balanced Allocation</td>
<td>60</td>
<td>0.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.01619</td>
<td>0.03940</td>
</tr>
<tr>
<td>10134031</td>
<td>ROP</td>
<td>$-for-$</td>
<td>Balanced Allocation</td>
<td>65</td>
<td>0.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.02286</td>
<td>0.03634</td>
</tr>
<tr>
<td>12044121</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>100</td>
<td>0.18484</td>
<td>0.04319</td>
</tr>
<tr>
<td>12044131</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.12931</td>
<td>0.03944</td>
</tr>
<tr>
<td>12044141</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>1.25</td>
<td>250</td>
<td>100</td>
<td>0.08757</td>
<td>0.03707</td>
</tr>
<tr>
<td>12044121</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>50</td>
<td>0.18484</td>
<td>0.02160</td>
</tr>
</tbody>
</table>

Interpolation in the Factor Tables

Interpolation is only permitted across the last four (4) dimensions of the risk parameter set $\tilde{\theta}$: Attained Age (λ), Policy Duration (D), AV÷GV Ratio (ϕ) and MER. The “MER Delta” is calculated based on the difference between the actual MER and that assumed in the factor testing (see Table 2-10), subject to a cap (floor) of 100 bps (-100 bps). In general, the calculation for a single policy will require three applications of multi-dimensional linear interpolation between the $16 = 2^4$ factors/values in the grid:

1. To obtain the *Base Factors* $f(\tilde{\theta})$ and $g(\tilde{\theta})$.
2. To obtain the *Scaling Factor* $h(\tilde{\theta}) = R$.

Based on the input parameters, the supplied functions (see Appendix 9) will automatically perform the required lookups, interpolations and calculations for $h(\tilde{\theta}) = R$, including the constraints imposed on the margin ratio W. Use of the tools noted in Appendix 9 is not mandatory.

Multi-dimensional interpolation is an iterative extension of the familiar two-dimensional linear interpolation for a discrete function $V(x)$:
\[
\tilde{V}(x_k + \delta) = (1 - \xi) \times V(x_k) + \xi \times V(x_{k+1}) \\
\text{and} \quad \xi = \frac{\delta}{x_{k+1} - x_k}
\]

In the above formulation, \(\tilde{V}(x)\) is assumed continuous and \(x_k\) and \(x_{k+1}\) are defined values (“nodes”) for \(V(x)\). By definition, \(x_k \leq (x_k + \delta) \leq x_{k+1}\) so that \(0 \leq \xi \leq 1\). In effect, multi-dimensional interpolation repeatedly applies simple linear interpolation one dimension at a time until a single value is obtained.

Multi-dimensional interpolation across all four dimensions is not required. However, simple linear interpolation for \(AV/GV\) Ratio (\(\phi\)) is mandatory. In this case, the company must choose nodes for the other three (3) dimensions according to the following rules:

<table>
<thead>
<tr>
<th>Risk Attribute (Dimension)</th>
<th>Node Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attained Age</td>
<td>Use next higher attained age.</td>
</tr>
<tr>
<td>Policy Duration</td>
<td>Use nearest.</td>
</tr>
<tr>
<td>MER Delta</td>
<td>Use nearest (capped at +100 & floored at –100 bps.</td>
</tr>
</tbody>
</table>

For example, if the actual policy/cell is attained age 62, policy duration 4.25 and MER Delta = +55 bps, the company should use the nodes defined by attained age 65, policy duration 3.5 and MER Delta = +100.

Table 2-7 provides an example of the fully interpolated results for a 5% Roll-up “Pro Rata” policy mapped to the Diversified Equity class (first row). While Table 2-7 does not demonstrate how to perform the multi-dimensional interpolation, it does show the required 16 nodes from the Base Factors. The margin offset is assumed to be 100 basis points.
Table 2-7: Base Factors for a 5% Rollup GMDB Policy, Diversified Equity

<table>
<thead>
<tr>
<th>Key</th>
<th>Age</th>
<th>Policy Dur</th>
<th>Policy Av/Gv</th>
<th>Mer (Bps)</th>
<th>Base Cost Factor</th>
<th>Base Margin Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPOLATED</td>
<td>62</td>
<td>4.25</td>
<td>0.80</td>
<td>265</td>
<td>0.15010</td>
<td>0.04491</td>
</tr>
<tr>
<td>12043121</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.14634</td>
<td>0.04815</td>
</tr>
<tr>
<td>12043122</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.15914</td>
<td>0.04511</td>
</tr>
<tr>
<td>12043131</td>
<td>60</td>
<td>3.5</td>
<td>1.00</td>
<td>250</td>
<td>0.10263</td>
<td>0.04365</td>
</tr>
<tr>
<td>12043132</td>
<td>60</td>
<td>3.5</td>
<td>1.00</td>
<td>350</td>
<td>0.11859</td>
<td>0.04139</td>
</tr>
<tr>
<td>12043221</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.12946</td>
<td>0.04807</td>
</tr>
<tr>
<td>12043222</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.14206</td>
<td>0.04511</td>
</tr>
<tr>
<td>12043231</td>
<td>60</td>
<td>6.5</td>
<td>1.00</td>
<td>250</td>
<td>0.08825</td>
<td>0.04349</td>
</tr>
<tr>
<td>12043232</td>
<td>60</td>
<td>6.5</td>
<td>1.00</td>
<td>350</td>
<td>0.10331</td>
<td>0.04129</td>
</tr>
<tr>
<td>12044121</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.18484</td>
<td>0.04319</td>
</tr>
<tr>
<td>12044122</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.19940</td>
<td>0.04074</td>
</tr>
<tr>
<td>12044131</td>
<td>65</td>
<td>3.5</td>
<td>1.00</td>
<td>250</td>
<td>0.12931</td>
<td>0.03944</td>
</tr>
<tr>
<td>12044132</td>
<td>65</td>
<td>3.5</td>
<td>1.00</td>
<td>350</td>
<td>0.14747</td>
<td>0.03757</td>
</tr>
<tr>
<td>12044221</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.16829</td>
<td>0.04313</td>
</tr>
<tr>
<td>12044222</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.18263</td>
<td>0.04072</td>
</tr>
<tr>
<td>12044231</td>
<td>65</td>
<td>6.5</td>
<td>1.00</td>
<td>250</td>
<td>0.11509</td>
<td>0.03934</td>
</tr>
<tr>
<td>12044232</td>
<td>65</td>
<td>6.5</td>
<td>1.00</td>
<td>350</td>
<td>0.13245</td>
<td>0.03751</td>
</tr>
</tbody>
</table>

The interpolations required to compute the *Scaling Factor* are slightly different from those needed for the *Base Factors*. Specifically, the user should not interpolate the intercept and slope terms for each surrounding node, but rather interpolate the *Scaling Factors* applicable to each of the nodes.

Table 2-8 provides an example of the *Scaling Factor* for the sample policy given earlier in Table 2-7 (i.e., a 5% Roll-up “Pro Rata” policy mapped to the Diversified Equity class) as well as the nodes used in the interpolation. The aggregate AV/GV for the product portfolio (i.e., all 5% Roll-up policies combined) is 0.75; hence, 90% of this value is 0.675 as shown under “Adjusted Product AV/GV”. As before, the margin offset is 100 basis points per annum.
Table 2-8: Interpolated Scaling Factors for a 5% Rollup GMDB Policy, Diversified Equity

<table>
<thead>
<tr>
<th>Key</th>
<th>Age</th>
<th>Policy Dur</th>
<th>Adjusted Product Av/Gv</th>
<th>Mer (Bps)</th>
<th>Intercept</th>
<th>Slope</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPOLATED</td>
<td>62</td>
<td>4.25</td>
<td>0.675</td>
<td>265</td>
<td>n/a</td>
<td>n/a</td>
<td>0.871996</td>
</tr>
<tr>
<td>12043111</td>
<td>60</td>
<td>3.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12043112</td>
<td>60</td>
<td>3.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12043121</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12043122</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
<tr>
<td>12043211</td>
<td>60</td>
<td>6.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12043212</td>
<td>60</td>
<td>6.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12043221</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12043222</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
<tr>
<td>12044111</td>
<td>65</td>
<td>3.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12044112</td>
<td>65</td>
<td>3.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12044121</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12044122</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
<tr>
<td>12044211</td>
<td>65</td>
<td>6.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12044212</td>
<td>65</td>
<td>6.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12044221</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12044222</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
</tbody>
</table>

Adjustments to GC for Product Variations & Risk Mitigation/Transfer

In some cases, it may be necessary for the company to make adjustments to the published factors due to:

1. A variation in product form wherein the definition of the guaranteed benefit is materially different from those for which factors are available (see Table 2-9); and/or
2. A risk mitigation / management strategy that cannot be accommodated through a straight-forward and direct adjustment to the published values. Any adjustments to the published factors must be fully documented and supported through stochastic modeling. Such modeling may require stochastic simulations, but would not ordinarily be based on full inforce projections. Instead, a representative “model office” should be sufficient. In the absence of material changes to the product design, risk management program and Alternative Method (including the published factors), the company would not be expected to redo this modeling each year.

Note that minor variations in product design do not necessarily require additional effort. In some cases, it may be reasonable to use the factors/formulas for a different product form (e.g., for a “roll-up” GMDB policy near or beyond the maximum reset age or amount, the company should use the “return-of-premium” GMDB factors/formulas, possibly adjusting the guaranteed value to reflect further resets, if any). In other cases, the company might determine the RBC based on two different guarantee definitions and interpolate the results to obtain an appropriate value for the given policy/cell. Likewise, it may be possible to adjust the Alternative Method results for certain risk transfer arrangements without significant additional work (e.g., quota-share reinsurance without caps, floors or sliding scales would normally be reflected by a simple pro-rata adjustment to the “gross” GC results).

However, if the policy design is sufficiently different from those provided and/or the risk mitigation strategy is non-linear in its impact on the AAR, and there is no practical or obvious way to obtain a good result from the prescribed factors/formulas, the company must justify any adjustments or approximations by stochastic modeling. Notably this modeling need not be performed on the whole portfolio, but can be undertaken on an appropriate set of representative policies.

The remainder of this section suggests a process for adjusting the published “Cost” and “Margin Offset” factors due to a variation in product design (e.g., a “step-up” option at every 7th anniversary whereby the guaranteed value is reset to the account value, if higher). Note that the “Scaling Factors” (as determined by the slope and intercept terms in the factor table) would not be adjusted.

The steps for adjusting the published Cost and Margin Offset factors for product design variations are:

1. Select a policy design in the published tables that is similar to the product being valued. Execute cashflow projections using the documented assumptions (see Tables 2-9 and 2-10) and the scenarios from the prescribed generators for a set of representative cells (combinations of attained age, policy duration, asset class, AV/GV ratio and MER). These cells should correspond to nodes in the factor grid. Rank (order) the sample distribution of results for the present value of net cost\(^6\). Determine those scenarios which comprise CTE(90).

\(^6\) Present value of net cost = PV[guaranteed benefit claims in excess of account value] – PV[margin offset]. The discounting includes cashflows in all future years (i.e., to the earlier of contract maturity and the end of the horizon).
2. Using the results from step 1., average the present value of cost for the CTE(90) scenarios and divide by the current guaranteed value. For a the \(J^{th} \) cell, denote this value by \(F_J \). Similarly, average the present value of margin offset revenue for the same subset of scenarios and divide by account value. For the \(J^{th} \) cell, denote this value by \(G_J \).

3. Extract the corresponding factors from the published grid. For each cell, calibrate to the published tables by defining a “model adjustment factor” (denoted by asterisk) separately for the “cost” and “margin offset” components:

\[
F_j^* = \frac{f(\bar{\theta})}{F_j} \quad \text{and} \quad G_j^* = \frac{g(\bar{\theta})}{G_j}
\]

4. Execute “product specific” cashflow projections using the documented assumptions and scenarios from the prescribed generators for the same set of representative cells. Here, the company should model the actual product design. Rank (order) the sample distribution of results for the present value of net cost. Determine those scenarios which comprise CTE(90).

5. Using the results from step 4., average the present value of cost for the CTE(90) scenarios and divide by the current guaranteed value. For a the \(J^{th} \) cell, denote this value by \(\tilde{F}_J \). Similarly, average the present value of margin offset revenue for the same subset of scenarios and divide by account value. For a the \(J^{th} \) cell, denote this value by \(\tilde{G}_J \).

6. To calculate the AAR for the specific product in question, the company should implement the Alternative Method as documented, but use \(\tilde{F}_J \times F_j^* \) in place of \(f(\bar{\theta}) \) and \(\tilde{G}_J \times G_j^* \) instead of \(g(\bar{\theta}) \). The company must use the “Scaling Factors” for the product evaluated in step 1. (i.e., the product used to calibrate the company’s cashflow model).
Assumptions for the Alternative Method Published GMDB Factors

This subsection reviews the model assumptions used to develop the Alternative Method factors. Each node in the factor grid is effectively the modeled result for a given “cell”.

Table 2-9: Model Assumptions & Product Characteristics

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Charges (MER)</td>
<td>Vary by fund class. See Table 2-10 later in this section.</td>
</tr>
<tr>
<td>Base Margin Offset</td>
<td>100 basis points per annum</td>
</tr>
</tbody>
</table>
| **GMDB Description** | 1. ROP = return of premium ROP.
2. ROLL = 5% roll-up, capped at 2.5 × premium, frozen at age 80.
3. MAV = annual ratchet (maximum anniversary value), frozen at age 80.
4. HIGH = Higher of 5% roll-up and annual ratchet frozen at age 80.
5. EDB = ROP + 40% Enhanced Death Benefit (capped at 40% of deposit). |
| **Adjustment to GMDB Upon Partial Withdrawal** | “Pro-Rata by Market Value” and “Dollar-for-Dollar” are tested separately. |
| **Surrender Charges** | Ignored (i.e., zero). Reflected in the “CA” component of the AAR. |
| **Single Premium / Deposit** | $100,000. No future deposits; no intra-policy fund rebalancing. |
| **Base Policy Lapse Rate** | Pro-rata by MV: 10% p.a. at all policy durations (before dynamics)
Dollar-for-dollar: 2% p.a. at all policy durations (no dynamics) |
| **Partial Withdrawals** | Pro-rata by MV: None (i.e., zero)
Dollar-for-dollar: Flat 8% p.a. at all policy durations (as a % of AV).
No dynamics or anti-selective behavior. |
| **Mortality** | 100% of MGDB 94 ALB. |
| **Gender /Age Distribution** | 100% male. Methodology accommodates different attained ages and policy durations. A 5-year age setback will be used for female annuitants. |
| **Max. Annuitization Age** | All policies terminate at age 95. |
| **Fixed Expenses, Annual Fees** | Ignored (i.e., zero). Reflected in the “FE” component of the AAR. |
| **Income Tax Rate** | 21% |
Discount Rate | 4.54% (after-tax) effective = 5.75% pre-tax.
---|---
Dynamic Lapse Multiplier | $U=1, \ L=0.5, \ M=1.25, \ D=1.1$
(Applies only to policies where GMDB is adjusted “pro-rata by MV” upon withdrawal) |
- Applied to the ‘Base Policy Lapse Rate’ (not withdrawals).

Notes on GMDB Factor Development

- The roll-up is continuous (not simple interest, not stepped at each anniversary) and is applied to the previous roll-up guaranteed value (i.e., not the contract guaranteed value under HIGH).

- The Enhanced Death Benefit (“EDB”) is floored at zero. It pays out 40% of the gain in the policy upon death at time t:

\[B_t = \text{MIN}[0.40 \times \text{Deposit}, 0.40 \times \text{MAX}(0, \text{AV}_t - \text{Deposit})]. \]

The test policy also has a 100% return-of-premium GMDB, but the EDB Alternative Factors will be net of the GMDB component. That is, the EDB factors are ‘stand-alone’ and applied in addition to the GMDB factors.

- The “Base Policy Lapse Rate” is the rate of policy termination (total surrenders). Policy terminations (surrenders) are assumed to occur throughout the policy year (not only on anniversaries).

- Partial withdrawals (if applicable) are assumed to occur at the end of each time period (quarterly).

- Account charges (“MER”) represent the total amount (annualized, in basis points) assessed against policyholder funds (e.g., sum of investment management fees, mortality and expense charges, risk premiums, policy/administrative fees, etc.). They are assumed to occur throughout the policy year (not only on anniversaries).

<table>
<thead>
<tr>
<th>Asset Class / Fund</th>
<th>Account Value Charges (MER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Account</td>
<td>0</td>
</tr>
<tr>
<td>Money Market</td>
<td>110</td>
</tr>
<tr>
<td>Fixed Income (Bond)</td>
<td>200</td>
</tr>
<tr>
<td>Balanced</td>
<td>250</td>
</tr>
<tr>
<td>Investment Category</td>
<td>Value</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Diversified Equity</td>
<td>250</td>
</tr>
<tr>
<td>Diversified International Equity</td>
<td>250</td>
</tr>
<tr>
<td>Intermediate Risk Equity</td>
<td>265</td>
</tr>
<tr>
<td>Aggressive or Exotic Equity</td>
<td>275</td>
</tr>
</tbody>
</table>
Calculation Example

Continuing the previous example (see Tables 2-7 and 2-8) for a 5% Roll-up GMDB policy mapped to Diversified Equity, suppose we have the policy/product parameters as specified in Table 2-11.

Table 2-11: Sample Policy Results for 5% Roll-up GMDB, Diversified Equity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit Value</td>
<td>$100.00</td>
<td>Total deposits adjusted for partial withdrawals.</td>
</tr>
<tr>
<td>Account Value</td>
<td>$98.43</td>
<td>Total account value at valuation date, in dollars.</td>
</tr>
<tr>
<td>GMDB</td>
<td>$123.04</td>
<td>Current guaranteed minimum death benefit, in dollars.</td>
</tr>
<tr>
<td>Attained Age</td>
<td>62</td>
<td>Attained age at the valuation date (in years).</td>
</tr>
<tr>
<td>Policy Duration</td>
<td>4.25</td>
<td>Policy duration at the valuation date (in years).</td>
</tr>
<tr>
<td>GV Adjustment</td>
<td>Pro-Rata</td>
<td>GMDB adjusted pro-rata by MV upon partial withdrawal.</td>
</tr>
<tr>
<td>Fund Class</td>
<td>Diversified Equity</td>
<td>Contract exposure mapped to Diversified Equity as per the Fund Categorization instructions in the section of this Appendix on Component GC.</td>
</tr>
<tr>
<td>MER</td>
<td>265</td>
<td>Total charge against policyholder funds (bps).</td>
</tr>
<tr>
<td>ProductCode</td>
<td>2</td>
<td>Product Definition code as per lookup key in Table 4.</td>
</tr>
<tr>
<td>GV Adjust</td>
<td>0</td>
<td>GV Adjustment Upon Partial Withdrawal as per key in Table 2-4.</td>
</tr>
<tr>
<td>FundCode</td>
<td>4</td>
<td>Fund Class code as per lookup key in Table 2-4.</td>
</tr>
<tr>
<td>PolicyMVGV</td>
<td>0.800</td>
<td>Contract account value divided by GMDB.</td>
</tr>
<tr>
<td>AdjProductMVGV</td>
<td>0.675</td>
<td>90% of the aggregate AV/GV for the Product portfolio.</td>
</tr>
<tr>
<td>RC</td>
<td>150</td>
<td>Margin offset (basis points per annum).</td>
</tr>
</tbody>
</table>

Using the usual notation, $GC = GV \times f(\tilde{\theta}) - AV \times \hat{g}(\tilde{\theta}) \times h(\tilde{\theta})$.

\[
f(\tilde{\theta}) = 0.150099 = \text{GetCostFactor}(2, 0, 4, 62, 4.25, 0.8, 265)
\]
\[\hat{g}(\theta) = 0.067361 = \text{GetMarginFactor}(2, 0, 4, 62, 4.25, 0.8, 265, 150) \]
\[h(\theta) = 0.887663 = \text{GetScalingFactor}(2, 0, 4, 62, 4.25, 0.675, 265, 150) \]

Hence, \(GC = 12.58 = (123.04 \times 0.150099) - (98.43 \times 0.067361 \times 0.887663) \). As a normalized value, this quantity is 12.78% of account value, 10.23% of guaranteed value and 51.1% of the current net amount at risk (Net amount at risk = GV – AV).

Note that \(\hat{g}(\theta) = \frac{\alpha}{\bar{\alpha}} \times g(\bar{\theta}) = \frac{150}{100} \times 0.044907 \) where \(g(\bar{\theta}) \) is “per 100 basis points” of available margin offset.

\[g(\bar{\theta}) = 0.044907 = \text{GetMarginFactor}(2, 0, 4, 62, 4.25, 0.8, 265, 100) \]
Academy C-2 Mortality Work Group Update

Chris Trost, MAAA, FSA
Chairperson, C-2 Work Group
American Academy of Actuaries
Agenda

- Follow-up from December update at National Association of Insurance Commissioners (NAIC) Fall National meeting
 - Additional catastrophe component for an emerging sustained risk
 - Product differentiation

- Next steps
C-2 Mortality Overall Approach

- C-2 requirement covers mortality risk at the 95th percentile and is net of risk covered in statutory reserves
- C-2 requirement includes mortality risks related to:
 - Volatility Risk—natural statistical deviations in experienced mortality
 - Level Risk—error in base mortality assumption
 - Trend Risk—adverse mortality trend
 - Catastrophe Risk
 - Large temporary mortality increase from a severe event such as a pandemic or terrorism
 - *Sustained mortality increase from an emerging mortality risk*
- Evaluate mortality risks using Monte Carlo simulation
- Express capital requirement using a factor-based approach (e.g., factor applied to Net Amount at Risk)
Current C-2 Life Mortality Risk-Based Capital

<table>
<thead>
<tr>
<th>Per $1000 of NAR</th>
<th>Individual</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>First $500M</td>
<td>2.23</td>
<td>1.75</td>
</tr>
<tr>
<td>Next $4.5B</td>
<td>1.46</td>
<td>1.16</td>
</tr>
<tr>
<td>Next $20B</td>
<td>1.17</td>
<td>0.87</td>
</tr>
<tr>
<td>>$25B</td>
<td>0.87</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Additional Catastrophe Component for Emerging Risks

- Feedback from December NAIC meeting was that the LRBCWG should consider adding a component for an emerging mortality risk

- C-2 Work Group developed a second catastrophe component informed by historical health events impacting the US population; e.g., AIDS and opioids
 - Component is intended to cover emerging risks that could materialize in the insured population
 - Conceptually, the component is expressed as a low annual probability of a sustained severe mortality increase (example approach provided in appendix)
Product Differentiation

- The work group is considering differentiating factors between products with near-term inforce pricing flexibility and those with minimal/no inforce pricing flexibility.
- Higher factors are associated with products that have long-term guarantees.
- Two options are under consideration:
 1. Develop separate factors for product categories.
 2. Blend the categories into one aggregate factor.
Next Steps

- Follow-up call with LRBCWG to get more detailed feedback
- Finalize model and assumptions
 - Group life
 - Review size bands against current industry data
 - Review aggregate model output and peer review
Questions?

Additional Questions, contact:

Chris Trost, MAAA, FSA
Chairperson, C-2 Work Group

Ryan Fleming, MAAA, FSA
C-2 Work Group

Ian Trepanier
Life Policy Analyst
American Academy of Actuaries
trepanier@actuary.org
Appendix: Additional Catastrophe Component for Emerging Risks
(Expressed as a 2.5% annual probability of a 5% sustained mortality increase)

<table>
<thead>
<tr>
<th>Description (source: CDC mortality statistics for US)</th>
<th>% Incr. to US Population Mortality</th>
<th>Death rate per 100K</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS mortality in peak year—1995, all ages</td>
<td>+1.9%</td>
<td>16.4</td>
</tr>
<tr>
<td>AIDS mortality in peak year—1995, ages 35-44</td>
<td>+5.0%</td>
<td>44.4</td>
</tr>
<tr>
<td>Estimated opioids mortality in peak year—2017, all ages</td>
<td>+1.8%</td>
<td>15.8</td>
</tr>
<tr>
<td>Drug-induced mortality in peak year—2017, ages 35-44</td>
<td>+4.7%</td>
<td>40.6</td>
</tr>
</tbody>
</table>

- AIDS (1995) and opioids (2017) both peaked at near a 2% increase to U.S. population mortality
 - Assumption for a 5% increase was derived by conservatively applying the increase in mortality at the worst age band in the worst year
- Probability and magnitude are less than anticipated AIDS impact in early 1990s factor development (i.e., AIDS was a major concern at the time)
 - However, additional component is greater than the actual mortality costs experienced in the insured population
- Provides for the likelihood of 1 sustained event over a 40-year period
This page intentionally left blank.
C-3 Work Group Update

Link Richardson, MAAA, FSA
Chairperson, C-3 Work Group
American Academy of Actuaries
Discussion Topic

- The Academy C-3 Life and Annuities Work Group (C-3 WG) has a request from the NAIC Life Risk-Based Capital (E) Working Group (LRBC) to “Update the current C-3 Phase I or C-3 Phase II methodology to include Indexed Annuities.”

- The C-3 WG has developed high-level conceptual recommendations with respect to this request and would like to discuss them with the Life Risk-Based Capital Working Group (LRBC) before proceeding to develop the specifics of the recommendations.
Discussion Outline

- 2015 C-3 Phase I (C-3 P1) Field Test Recap
- Highlights of changes since 2015
- Key remaining differences—C-3 P1 versus C-3 P2
- Scenario considerations
- High-level recommendations
- Analysis considerations
C-3 Phase 1 Field Test Recap

- 2015 Field Test used 9/30/2014 models and scenarios, and essentially tested Phase 1 in the then-current C-3 Phase 2 framework
- Participation was made mandatory for large companies via Risk-Based Capital (RBC) Instructions, with results due in the February RBC filing
- Tested 200 “VM-20” interest rate scenarios
 - Key difference was Mean Reversion Point (MRP) of 4.00%, down from 6.55%
 - Resulting C-3 requirements were significantly higher, likely due to reinvestment effects for long-duration products, from lower MRP
- Also tested conditional tail expectation (CTE) 90 metric, versus 92nd through 98th percentile (with heaviest weight at 95th)
 - Change in metric made little difference to results
- C-3 Phase 1 use of expected defaults, and no Asset Valuation Reserve (AVR), was made explicit for C-3 Phase 2
C-3 Phase 2—Highlights of Changes since 2015 Field Test

- Interest rate scenarios now prescribed
- CTE 90 metric changed to 25% of (CTE 98 minus CTE 70), from same distribution, except for tax adjustment
- C-1 charges prescribed at CTE 70 level
- AVR only included if not used in cash flow testing (CFT)
- RBC Standard Scenario eliminated, but Reserve Additional Standard Projection Amount (ASPA) doesn’t reduce RBC
- Working Reserve (WR) set to zero, instead of Cash Surrender Value (CSV)
- Lower Error Factors allowed for implicit method of reflecting hedging
- Smoothing now applies to RBC instead of (CTE 90 – CSV)
- SSAP 108 allows hedge accounting for derivatives hedging VA guarantees
C-3 Phase 1 Versus Updated Phase 2—Key Differences

- Minimum RBC is 50% of factor-based amount vs. implicit floor because reserves and RBC are from the same distribution
- ESG Mean Reversion Point (MRP) 6.55% vs. formulaic—currently 3.50%
- Capital requirement based on approximately CTE 90 vs. 25% of (CTE 98 minus CTE 70)
- C-1 charges at expected levels vs. CTE 70
- Surplus in projections based on reserves vs. WR of zero
Scenario Considerations

- Suggestion has been made for two MRPs. We currently have two MRPs—a high one for C-3 P1 and a low one for PBR & C-3 P2.

- A good solution is an MRP between those two, along with an update to increase the interest rate volatility. This recommendation could be provided as guidance to the development of the new ESG. It may be instructive to look at combined results for the two current scenario sets as a proxy for how that solution might look.

- The 2015 field test used 200 identical interest rate scenarios for all companies. Most companies run 1,000 scenarios for C-3 P2. A two-dimensional stratification (interest rates and equity returns) was developed for 2015, but not used because Indexed Annuities were excluded.

- Use of the two-dimensional 200-scenario framework is recommended, and would allow for comparisons to both the current 50-scenario C-3 P1 framework and the typical 1,000 scenarios for C-3 P2.
High-Level Recommendations

- Repeat the 2015 C-3 Phase 1 field test, in 2021 for 9/30/2020 models, but using the updated C-3 Phase 2 framework and including indexed annuities along with all products currently in scope for C-3 P1.

- If the field test is mandatory for large companies, as the 2015 test was, change the timing to occur after year-end work is largely complete. Results could be due with the June RBC filing instead of February.

- Since the C-3 P2 framework now specifies interest rate scenarios as well as equity returns and hedging guidance, necessary adjustments to include Indexed Annuities should be minimal.

- The Total Asset Requirement (TAR) framework is suited to handling differing levels of reserve conservatism but is complicated by the change to 25% of (CTE 98 minus CTE 70). Develop specific recommendation for treatment of reserves not equal to a CTE 70 basis. Then this type of field test could be performed before VM-22 updates are completed, or even if VM-22 updates only apply to new business.

- Once new economic scenarios are available, a broader field test could be performed including all products and frameworks to which the scenarios would apply, such VA and Life PBR and C-3 testing.
Results Analysis Considerations

- Regulators and the Academy WG should develop a useful set of filing requirements and questions to facilitate and elicit participants’ comments on their own results. For example:
 - Results by model or product group would be helpful to analysis efforts.
 - Present values of ending surplus can be a useful indicator of the potential margin before deficiencies would develop, for scenarios where there is no deficiency.
 - Results with projected reserves, and with working reserves equal zero, can help with analysis of the significance of this choice.

- The confidentiality provisions around RBC filings were relied upon in 2015, and would likely be suitable again, if NAIC staff and regulators can perform work on summarization and aggregation of results.

- If the High-Level Recommendations and Analysis Considerations are acceptable, the Academy C-3 WG can begin drafting of proposed RBC Instructions.
Questions?

- Link Richardson, MAAA, FSA
 Chairperson, C-3 Work Group
 American Academy of Actuaries

- Ian Trepanier
 Life Policy Analyst
 American Academy of Actuaries
 Trepanier@actuary.org