LONG-TERM SOLUTION (YRT & VM-20) OVERVIEW AND INITIAL ANALYSIS

DECEMBER 5, 2019

NAIC 2019 FALL NATIONAL MEETING LIFE ACTUARIAL (A) TASK FORCE
Oliver Wyman was requested by the American Council of Life Insurers, the American Academy of Actuaries and the National Association of Insurance Commissioners to support an industry field test being conducted to aid the NAIC Life Actuarial (A) Task Force in the selection of a long-term solution for the treatment of non-guaranteed reinsurance under PBR.

Oliver Wyman shall not have any liability to any third party in respect of this report or any actions taken or decisions made as a consequence of the results, advice or recommendations set forth herein.

This report does not represent investment advice or provide an opinion regarding the fairness of any transaction to any and all parties. This report does not represent legal advice, which can only be provided by legal counsel and for which you should seek advice of counsel. The opinions expressed herein are valid only for the purpose stated herein and as of the date hereof.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been verified. No warranty is given as to the accuracy of such information. Public information and industry and statistical data are from sources Oliver Wyman deems to be reliable; however, Oliver Wyman makes no representation as to the accuracy or completeness of such information and has accepted the information without further verification. No responsibility is taken for changes in market conditions or laws or regulations and no obligation is assumed to revise this report to reflect changes, events or conditions, which occur subsequent to the date hereof.
Contents

1. Executive summary
2. Background
3. Analysis design
4. Initial analysis and insights
5. Next steps

- Appendix A: Supplementary results
- Appendix B: Model design and assumptions
- Appendix C: Analysis and validation tools
- Appendix D: Project team and governance
Executive summary
Executive summary
Long-term solution for modeling non-guaranteed reinsurance

BACKGROUND
A wide range of practice was observed from early adopters of PBR in regards to the modeling of non-guaranteed reinsurance and a formulaic solution was adopted on an interim basis for the 2020 Valuation Manual.

A field test is being performed to aid the NAIC Life Actuarial (A) Task Force (“LATF”) in the selection of a longer-term solution that is more principles-based.

ANALYTICAL SUPPORT
Oliver Wyman was selected to support and supplement the industry field test. The scope of our support is summarized below and further outlined in the remaining slides in this section of this presentation.

1 - Analysis and insights
Using generic industry models, Oliver Wyman will perform analysis that will be provided in advance of field test results and provide additional insights beyond those provided by field test participants, informed by a survey on broader industry practices. As needed, analysis outside the scope of the field test may be performed.

2 - Field test support
Oliver Wyman will lead calls with field test participants and assist in the preparation and interpretation of results. Additionally, analysis will be performed to better understand the range of variation in participant results (e.g., company and reinsurance structure, field test interpretations, modeling simplifications and/or limitations).

The purpose of today’s presentation is to share details on the design of the analysis models as well as initial insights
Analysis and insights

- Field test participants will prepare their models for the field test while Oliver Wyman performs deep analysis across a range of products and reinsurer-action scenarios to provide regulators with representative potential solutions impacts on an apples-to-apples basis. Initial analysis will be shared with LATF at the Fall NAIC meeting (December 2019) and subsequent analysis shared at the Winter NAIC meeting (March 2020).

Field test support

- The industry field test will commence; initially the focus will be on model preparation, testing of simple solutions and point-in-time reserve impacts, with a goal of identifying model challenges and testing the integrity and range of variability in the results of Oliver Wyman’s analysis.
- Field test participants will produce projected reserves for the various solutions, while Oliver Wyman assists with the interpretation and collection of results. The results of this test will give regulators additional comfort with conclusions drawn from the initial analysis by extending the range of results for optionality and variation not previously captured.

Deliverables for the stages of work are described on the next slide

1 Oversight from Academy, NAIC and ACLI. See Appendix D for further details.
Deliverables

Deliverables for the stages of work shown on the prior slide are described below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Deliverables</th>
</tr>
</thead>
</table>
| **Analysis and insights** | • AXIS models, documentation and Testware which will be made available to the NAIC\(^1\)
 • Initial analysis and associated model design, with capabilities to analyze the impact field tested proposals across a range of product types, reinsurance structures and reinsurer reaction scenarios\(^2\)
 • “Range of interpretation survey” intended to further understanding on the range of interpretations for field tested proposals across a much larger participation base than the actual field test |
| **Field test support** | • Conference calls with field test participants to ensure consistent understanding of field testing instructions and provide advice in light of any model simplifications or limitations (one-on-one calls with participants will be used as needed)
 • Reports summarizing results from industry field test, with additional analysis to further understanding of these results\(^3\) (Note: Separate reports will be created for point-in-time and projected reserves due to the timing of the field test)
 • Additional analysis performed in light of responses to “range of interpretation” survey and beyond the scope of the field test (if desired by LATF to allow an informed decision to take place) |

\(^1\) See Appendix C for further details
\(^2\) Using reinsurer reaction scenarios as opposed to treaty provisions will provide more flexibility in how the results are used because reaction scenarios can be mapped to treaty provisions
\(^3\) Oliver Wyman will help bridge the impact of model simplifications (e.g. no assumption unlocking in participation submissions) to increase the relevancy of field test results
Initial analysis and insights

Assumptions and modeling methodology\(^1\) underlying the results shown today are summarized below

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>• GGY AXIS</td>
</tr>
<tr>
<td></td>
<td>• 60 year projection horizon (30 for Term)</td>
</tr>
<tr>
<td>Best estimate assumptions</td>
<td>• Liability assumptions are intended to reflect industry averages and are based on analysis from recent SOA experience studies</td>
</tr>
<tr>
<td></td>
<td>• Future mortality improvement is .75% per year in all years</td>
</tr>
<tr>
<td></td>
<td>• Current scale of YRT rates equal to best estimate mortality</td>
</tr>
<tr>
<td>Prudent estimate assumptions</td>
<td>• Mortality is improved to each valuation date to reflect historic mortality improvement</td>
</tr>
<tr>
<td></td>
<td>• Initial sufficient data period equal to 15 years and increased by one year at each future valuation date, subject to maximum years of sufficient data allowed for under VM-20 for the given level of credibility</td>
</tr>
<tr>
<td></td>
<td>• Prudent margins intended to reflect industry averages with a separate set of mortality margins to resemble a small/mid-sized and large insurer (or reinsurer)</td>
</tr>
<tr>
<td>Reserve assumptions</td>
<td>• The NPR uses the 2017 CSO and a valuation interest rate of: 4.5% for calculations subject to VM-20 Sections 3.b.4 and 3.b.6 and 3.5% for calculations subject to VM-20 Section 3.A.2 and 3.b.5</td>
</tr>
<tr>
<td></td>
<td>• The valuation scenario for the DR follows the 12/31/2018 scenario at each valuation date</td>
</tr>
<tr>
<td></td>
<td>• Starting assets at each valuation date use the ‘direct iteration’ approach</td>
</tr>
<tr>
<td></td>
<td>• The DR (and if shown, SR) are re-valued annually for 10-years and every 5-years thereafter. Reserve balances are interpolated using policy level reserve calculations between re-valuation dates and smoothed to account for any “reserve blips” caused by the reinvestment frequency and resulting earned rates.</td>
</tr>
</tbody>
</table>

Analysis is intended to align with industry field test instructions and the products and assumptions are intended to be broadly representative of the industry

\(^1\) See Appendix B for further details
Background
Background
This section explores the relationship between mortality margin and the impact that reinsurance has on reserves under PBR

1. Mortality and PBR prescribed margins

2. Impact of mortality margins

3. Projected reinsurance credit

4. Formulaic reserve credit

Results are presented for two sets of boundary reinsurer reactions under PBR mortality margins, and an analytical benchmark (10% mortality margin)
Mortality and PBR prescribed margin
Level of margin by VM-20 mortality assumption component is illustrated below

Male, 40 year old, preferred non smoker, 2019 valuation

The mortality assumption under VM-20 contains both direct sources of margin and an indirect source of margin (lack of future mortality improvement)
Impact of mortality margins (1/2)
The impact of a 50% first dollar YRT reinsurance agreement with the current scale of rates equal to best estimate mortality is shown below.

Pre-reinsurance

Post-reinsurance

YRT Scenario 1: No change in rates
YRT Scenario 2: Increase rates to equal PBR mortality

The impact of reinsurance depends largely on the modeled reinsurer reaction

1 Rates are increased annually, on policy anniversary, by an amount equal to the difference between PBR mortality and the current scale of YRT rates
Impact of mortality margins (2/2)
The impact of the 50% reinsurance agreement is re-evaluated below after updating the PBR mortality assumption to use a level 10% margin.

Impact of mortality margins

The impact of reinsurance depends largely on the modeled reinsurer reaction.

Pre-reinsurance

- **Gross NPR**
- **Gross DR**

Post-reinsurance

- **Net NPR**
- **Net DR - Scenario 1**
- **Net DR - Scenario 2**

YRT Scenario 1: No change in rates

YRT Scenario 2: Increase rates to equal PBR mortality

1 Rates are increased annually, on policy anniversary, by an amount equal to the difference between PBR mortality and the current scale of YRT rates.
Projected reinsurance credit

The reinsurance reserve credit (difference between pre- and post-reinsurance reserve) under the two sets of margins is shown below.

Impact on deterministic reserve

Impact on PBR reserve (max of NPR and DR)\(^1\)

YRT Scenario 1: No change in rates
YRT Scenario 2: Increase rates to equal PBR mortality\(^1\)

The impact of reinsurance on PBR margins gets closer to the analytical benchmark over time because of mortality assumption unlocking at future valuation dates

\(^1\) Rates are increased annually, on policy anniversary, by an amount equal to the difference between PBR mortality and the current scale of YRT rates
Key takeaways

<table>
<thead>
<tr>
<th>Takeaway</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Reinsurer reaction scenarios can produce reserve credits in excess</td>
<td>• ½ Cx represents the cost of reinsurance that corresponds to the period for which the reinsurance premium has been paid, but not yet earned by the reinsurer, with no provision for reinsurance beyond the paid to date</td>
</tr>
<tr>
<td>of ½ Cx</td>
<td>• Full reinsurer reaction scenario tested allow for:</td>
</tr>
<tr>
<td></td>
<td>o Reinsurer reaction that reflects differences between evolution of mortality margin and reinsurance premium payment dates</td>
</tr>
<tr>
<td></td>
<td>o Contractual provisions around the return of future unearned reinsurance premiums on death and lapse</td>
</tr>
<tr>
<td></td>
<td>o Other mechanical differences due to VM-20 requirements (e.g. differences in starting assets and the resulting earned rate)</td>
</tr>
<tr>
<td>2 It is important to look at long-term projections of reserves when</td>
<td>• The level of margin in mortality as compared to best estimate changes at future valuation dates, due to unlocking of mortality improvement and extending the sufficient data period</td>
</tr>
<tr>
<td>evaluating the impact of reinsurance modeling approaches</td>
<td>• As the business ages, higher mortality and shorter projection horizons will change the impact of reinsurance on reserves at future valuation dates</td>
</tr>
</tbody>
</table>
Analysis design
Overview
Proposed granularity for the analysis and modeling is outlined below

<table>
<thead>
<tr>
<th>Methodology analysis dimensions</th>
<th>Granularity</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of the reinsurance</td>
<td>High</td>
<td>• Significant variability on the amount of reinsurance and relationship between rates and best estimate mortality is required to provide coverage of treaty types, provisions and the range of company usage of YRT reinsurance</td>
</tr>
<tr>
<td>Mortality</td>
<td>High</td>
<td>• Different starting levels of mortality credibility and years of sufficient data will provide insights into impacts for a range of company sizes</td>
</tr>
<tr>
<td>Reserves</td>
<td>Medium</td>
<td>• Robust re-valuation functionality is needed to provide projected long-term impacts in support of a long-term solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Forecasts of reserves are expected to be cumbersome for field-test participants</td>
</tr>
<tr>
<td>Products and population</td>
<td>Medium</td>
<td>• Popular product types with high net amount at risks were selected (Term and ULSG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In addition, CAUL was selected because it is a long-term product with a diminishing net amount at risk</td>
</tr>
<tr>
<td>Assets</td>
<td>Low</td>
<td>• Second order impact, as only the discount rate for the DR and the credited rate for interest sensitive products will be impacted</td>
</tr>
</tbody>
</table>

This section contains the results of sensitivities performed to confirm this level of granularity. See Appendix B for further details on the analysis design.
Reinsurer reaction scenarios
Proposed coverage is shown below. As needed, these results will be produced for the methodology analysis dimensions (e.g., product, company size, reinsurance attributes)

<table>
<thead>
<tr>
<th>Reinsurer reaction</th>
<th>Change to non-guaranteed YRT rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• N/A: Allow future mortality improvement in reserves</td>
</tr>
<tr>
<td>N/A: Informational</td>
<td>• N/A: Best estimate assumptions / economic reserve</td>
</tr>
<tr>
<td></td>
<td>• N/A: Interim solution (½ Cx credit)</td>
</tr>
<tr>
<td>None</td>
<td>• No change</td>
</tr>
<tr>
<td>Immediate</td>
<td>• Increase by 100% of prescribed mortality margin(^1), excluding future mortality improvement</td>
</tr>
<tr>
<td></td>
<td>• Increase by 100% of prescribed mortality margin(^1), including future mortality improvement</td>
</tr>
<tr>
<td></td>
<td>• Same as previous, except assuming ½ of best estimate mortality improvement</td>
</tr>
<tr>
<td></td>
<td>• Same as previous, except assuming 2x of best estimate mortality improvement</td>
</tr>
<tr>
<td></td>
<td>• Increase by the difference between current scale and PBR mortality</td>
</tr>
<tr>
<td></td>
<td>• Increase by 105% of the difference between current scale and PBR mortality</td>
</tr>
<tr>
<td></td>
<td>• Increase by 110% of prescribed mortality margin(^1), excluding future mortality improvement</td>
</tr>
<tr>
<td></td>
<td>• Increase by 110% of prescribed mortality margin(^1), including future mortality improvement</td>
</tr>
<tr>
<td>Delay 5-years</td>
<td>• Same as immediate, but no change to rates until 5-years after each valuation date</td>
</tr>
<tr>
<td>Delay 10-years</td>
<td>• Same as immediate, but no change to rates until 10-years after each valuation date</td>
</tr>
</tbody>
</table>

\(^1\) Includes both progressive and immediate reaction. The mortality margin will be evaluated on both an additive \((q_{\text{valuation}} - q_{\text{experience}})\) and multiplicative \((q_{\text{valuation}} / q_{\text{experience}})\) basis.

These results will be produced primarily to assist with the analysis and interpretation of field test results.
Impact analysis | High granularity
The following summarizes the impact reinsurance on PBR reserves for the sensitivities on model components with high granularity.

Both the properties of reinsurance and mortality have a significant impact on the reinsurance reserve credit.

See Appendix A for projected gross and net reserves.
Impact analysis | Low-medium granularity

The following summarizes the impact reinsurance on PBR reserves for the sensitivities on model components with low-medium granularity

The product and yield curve sensitivities have a lower impact on the reinsurance reserve credit

1 See Appendix A for projected gross and net reserves.
Initial insights and analysis
Scope of field test

The scope of the industry field test is focused on the “field test modified” APFs discussed on the September 12th LATF call and summarized below.

<table>
<thead>
<tr>
<th>APF</th>
<th>Description</th>
<th>Field testing variations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-40</td>
<td>• Actuarial judgement with clarified modeling principles/guidance</td>
<td>• Prudent estimate of all counterparty actions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prudent estimate of rate changes only after reaching 115% reinsurer loss ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Model prudent estimate of rate changes only after reaching 5 consecutive years of reinsurer losses</td>
</tr>
<tr>
<td>2019-41</td>
<td>• Reinsurance margin such that the difference between best estimate mortality and the current scale of YRT rates is maintained</td>
<td>• Best estimate mortality (for the purposes of calculating reinsurance margin) contains future mortality improvement for 15 years at a rate of 0%, .5% and 1% per year</td>
</tr>
<tr>
<td></td>
<td>• Increase reinsurance rates by reinsurance premium margin, equal to the percentage difference between PBR and best estimate mortality</td>
<td></td>
</tr>
<tr>
<td>2019-42</td>
<td>• Judgment modifications are allowed (if these are less conservative, other than recapture, then they require commissioner approval)</td>
<td>• Future mortality improvement included in best estimate mortality (used for the purpose of calculating reinsurance margin) for 5, 10, 15 and 20 years</td>
</tr>
</tbody>
</table>

The field test submission calls for two baselines; the interim solution (½ Cx) and a scenario where no change from the current scale of YRT rates is assumed.
Initial analysis

The remainder of this section focuses on representative impacts for the field-tested APFs, as summarized in the table below. In addition the impact is provided for the two baselines described on the prior slide.

<table>
<thead>
<tr>
<th>APF</th>
<th>Field testing variations</th>
<th>Initial analysis parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Prudent estimate of all counterparty actions
- Prudent estimate of rate changes only after reaching 115% reinsurer loss ratio
- Model prudent estimate of rate changes only after reaching 5 consecutive years of reinsurer losses |
- YRT rates are increased by 105% of the difference between the current scale and PBR mortality, until recapture in 2044\(^1\)
- No change in YRT rates until 2024\(^1\) at which point YRT rates are increased by an additional 5% of the difference between PBR mortality and the current scale of rates each year until 2044\(^1\), at which point rates have been increased by 100% of the difference |
| 2019-41 |
- *Description*: Reinsurance margin such that the difference between best estimate mortality and the current scale of YRT rates is maintained
- *Variations*: Best estimate mortality (for the purposes of calculating reinsurance margin) contains future mortality improvement for 15 years at a rate of 0%, .5% and 1% per year |
- Reinsurance premiums increased by the relative difference between PBR and best estimate mortality
- Mortality improvement on best estimate mortality (used for the purpose of calculating reinsurance margin) limited to 15 years at a rate of .75% per year (Note: The current scale of YRT rates is unchanged) |
| 2019-42 |
- *Description*: Increase reinsurance rates by reinsurance premium margin, equal to the percentage difference between PBR and best estimate mortality
- *Variations*: Future mortality improvement included in best estimate mortality for 5, 10, 15 and 20 years |
- |

The purpose of these results is to foster dialogue around these APFs, the format results are presented in, and any desired follow-up analysis.

\(^1\) This calendar year is fixed (i.e. doesn’t change at future valuation dates)
Impact analysis | Baseline
½ Cx and no change to current scale of YRT rates

Mortality and reinsurance margins
40-year-old male, preferred non-tobacco, 2019 valuation

Mortality

![Mortality Graph](image1)

Reinsurance

![Reinsurance Graph](image2)

Projected reserves
Baseline | ½ Cx and no change in YRT rates

Gross and net reserves

![Reserves Graph](image3)

Reinsurance credit – PBR reserve

![Reinsurance Credit Graph](image4)

There is no margin on reinsurance premiums under the baseline results because the first is formulaic and the second assumes that YRT rates are unchanged.
Impact analysis | APF 2019-40

YRT rates are increased by 105% of the difference between the current scale and PBR mortality, until recapture in 2044

Mortality and reinsurance margins

40-year-old male, preferred non-tobacco, 2019 valuation

Mortality

- VM-20/Best Est
- Best Est Mortality
- VM-20 Mortality

Reinsurance

- VM-20/Current Scale
- Current Scale YRT
- VM-20 YRT

The reinsurer reaction (5% over mortality margin) produces a reserve credit in excess of $\frac{1}{2} Cx$ (See Background section for explanation) until recapture in 2044
Impact analysis | APF 2019-40
No change in YRT rates until 2024 followed by progressive increases to break even in 2044 and later

Mortality and reinsurance margins
40-year-old male, preferred non-tobacco, 2019 valuation

Mortality

- VM-20/Best Est
- Best Est Mortality
- VM-20 Mortality

Reinsurance

- VM-20/Current Scale
- Current Scale YRT
- VM-20 YRT

Projected reserves
APF 2019-40 | Progressive rate increases starting in 2024

Gross and net reserves

The reserve credit is higher than the prior slide because of a slower reinsurer action. The reserve credit persists beyond 2044 because recapture is not modeled.
Impact analysis | APFs 2019-41, 2019-42
Future mortality improvement included in the best estimate component of reinsurance margin for 15 years at a rate of .75% per year

Mortality and reinsurance margins
40-year-old male, preferred non-tobacco, 2019 valuation

Mortality

![Mortality Graph]

Reinsurance

![Reinsurance Graph]

Projected reserves
APFs 2019-41, 2019-42 | 15 years of improvement

Gross and net reserves

![Gross and net reserves Graph]

Reinsurance credit – PBR reserve

![Reinsurance credit Graph]

The impact of APFs 2019-41 and 2019-42 are equal due to the selection of mortality improvement parameters and the method used to calculate the reinsurance margin
Next steps
Listed below are next steps for the analysis and field test

<table>
<thead>
<tr>
<th>Next Step</th>
<th>Target Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point in time</td>
<td>February 2020</td>
<td>Oliver Wyman to confirm and share results of industry field test for point-in-time reserves as well as additional consultant analysis at a LATF call in February</td>
</tr>
<tr>
<td>reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APF results</td>
<td>March 2020</td>
<td>Oliver Wyman to share APF specific results informed by industry range of practice survey at the March LATF meeting</td>
</tr>
<tr>
<td>Projected reserves</td>
<td>April 2020</td>
<td>Oliver Wyman to work alongside companies to develop projected reserves and share results with LATF at an April call</td>
</tr>
<tr>
<td>Draft amendment</td>
<td>May - June 2020</td>
<td>Academy working group will work with LATF to draft an amendment and expose for comment. Oliver Wyman will perform additional analysis as needed.</td>
</tr>
</tbody>
</table>

Range of interpretation survey

Field test submission format
Appendix A | Supplementary results
Impact analysis | gross reserves (1 of 2)
Pre-reinsurance reserves are shown below for the sensitivities on model components with high granularity

Baseline
Results from Section 1

Reinsurance sensitivity
Reduce portion of business reinsured

Mortality sensitivity
Reduced credibility and years of sufficient data
Impact analysis | gross reserves (2 of 2)

Pre-reinsurance reserves are shown below for the sensitivities on model components with low-medium granularity.

Baseline
Results from Section 1

Assets sensitivity
100bps increase to outer loop yield curve

Product sensitivity
5% increase in premium loads (and retail premiums)
Impact analysis | net reserves (1 of 2)

Post-reinsurance reserves are shown below for the sensitivities on model components with high granularity

Baseline
Results from Section 1

Reinsurance sensitivity
Reduce portion of business reinsured

Mortality sensitivity
Reduced credibility and years of sufficient data
Impact analysis | net reserves (2 of 2)

Post-reinsurance reserves are shown below for the sensitivities on model components with low-medium granularity

Baseline
Results from Section 1

Assets sensitivity
100bps increase to outer loop yield curve

Product sensitivity
5% increase in premium loads (and retail premiums)
Appendix B Model design and assumptions
Methodology analysis dimensions

The proposed coverage for the analysis is summarized below

<table>
<thead>
<tr>
<th>Component</th>
<th>Granularity</th>
<th>Coverage</th>
</tr>
</thead>
</table>
| Reinsurance | Very high | • Amount of reinsurance (None, 10% and 50%)
• Attachment point (First-dollar and excess of retention)
• Relationship between the current scale of YRT rates and best estimate mortality (i.e., equal to, less than and greater than)
• Default/company recapture and various reinsurer reaction scenarios (See next section) |
| Mortality | High | • Different best-estimate mortality improvement rates (0%, .5%, .75%, 1% per year) and levels of credibility & years of sufficient data |
| Reserves | Medium | • Projected reserves will be calculated based on the 2020 Valuation Manual and set to the Max(NPR, DR) with the SR enabled for select runs
• Reserves will be re-valued annually |
| Products and population | Medium | • Mix of business by issue age, risk class, gender and band for Term (T10 and T20), ULSG (Shadow account, lifetime guarantee) and CAUL (5-year specified premium guarantee, general account only) products issued on June 30, 2019 |
| Assets | Low | • Reinvestments only, level yield curve
• 50/50 mix of A/AA assets with 15-year duration in both inner and outer loop (Note: Credit spread and defaults will vary by inner and outer loop) |
Liability assumptions (ULSG)
The assumptions used in the analysis are below, including assumed PBR margins

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Anticipated experience assumption</th>
<th>Prudent estimate assumption (e.g. margin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>• 2015 VBT gender distinct, smoker distinct ANB • Relative Risk varies by risk class • A/E factors vary by high/low band • .75% annual future mortality improvement</td>
<td>• Prescribed margins applied to company mortality • Industry table: 2015 VBT with prescribed margins and mortality improvement scale • Grading and margins assumes 100% LF credibility</td>
</tr>
<tr>
<td>Lapse</td>
<td>• 3% annual lapse rate</td>
<td>• 2% annual lapse rate</td>
</tr>
<tr>
<td>Expenses</td>
<td>• $50 per policy (annual) • 2.5% premium tax • 2% inflation</td>
<td>• 105% margin on expenses • 2.5% inflation</td>
</tr>
</tbody>
</table>
Appendix C | Analysis and validation tools
Suite of modeling tools
Overview (1 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
</table>
| **AXIS Dataset** | • AXIS pricing/new business model equipped with ALM and PBR functionality, representative policies from generic product types and the flexibility to run various reinsurance reaction and PBR re-valuation scenarios
 | • DataLink functionality allowing for automated updates to product features and assumptions |
| **Model documentation** | • Self-contained documentation of model requirements, design, and testing |
| **Detailed user guide** | • Comprehensive guide showing the model setup for product features, assumptions and Batches
 | • Instructions on how to use the Testware and perform updates to the model |
Suite of modeling tools
Overview (2 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testware</td>
<td>• Comprehensive testing workbook which validates all calculations (scenario information, investment gain/loss on hedge and interpolated reserves taken as a given)</td>
</tr>
</tbody>
</table>
| **Analysis tool** | • Summarize, confirm, and provide meaningful metrics for the model office results
 • Graphs of reserve balances, distributable earnings, and the earned rate on general account assets
 • Provides high level check on outer and inner loop decrements and other implied values |
| **Input builders** | • User-friendly Excel tools in which assumptions and other required model values are translated from user friendly “source information” into AXIS formatted tables
 • These tools are embedded in the Dataset in order to enhance controls and governance |
Documentation
Details the requirements, design, documentation, and testing of the model in a modular and expandable structure

Documentation is centralized into a single, all-inclusive report to facilitate future maintenance. Appendices summarize future improvements and other key project deliverables.
User guide
Supplements the model documentation and provides additional detail on the AXIS model structure
Testware
Replicates model calculations while supporting version management, increasing transparency, and augmenting documentation.
Analysis tool
Aggregates results under pre-PBR and PBR setups and provides financial metrics and implied rate analysis
Input builders

Document and generate assumptions and product features in Excel with a process to import into AXIS.
Appendix D Project team and governance
Project team and governance
The consultant analysis will be overseen by NAIC Staff, the Academy, and the ACLI, as depicted in the following chart.
Contact information

<table>
<thead>
<tr>
<th>Chris Whitney, FSA, MAAA</th>
<th>Engagement manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal, Hartford</td>
<td></td>
</tr>
<tr>
<td>christopher.whitney@oliverwyman.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dylan Strother, FSA, MAAA</th>
<th>Technical lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Consultant, New York</td>
<td></td>
</tr>
<tr>
<td>dylan.strother@oliverwyman.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Katie van Ryn, FSA, MAAA</th>
<th>AXIS model development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultant, Toronto</td>
<td></td>
</tr>
<tr>
<td>katie.vanryn@oliverwyman.com</td>
<td></td>
</tr>
</tbody>
</table>

The report and the findings herein are subject to the reliances and limitations outlined at the beginning of this report. This report is considered a statement of actuarial opinion under the guidelines promulgated by the American Academy of Actuaries. Chris Whitney, Dylan Strother and Katie van Ryn of Oliver Wyman developed this report and meet the qualification requirements of the American Academy of Actuaries to render the opinion contained herein.
QUALIFICATIONS, ASSUMPTIONS AND LIMITING CONDITIONS

Oliver Wyman was requested by the American Council of Life Insurers, the American Academy of Actuaries and the National Association of Insurance Commissioners to support an industry field test being conducted to aid the NAIC Life Actuarial (A) Task Force in the selection of a long-term solution for the treatment of non-guaranteed reinsurance under PBR.

Oliver Wyman shall not have any liability to any third party in respect of this report or any actions taken or decisions made as a consequence of the results, advice or recommendations set forth herein.

This report does not represent investment advice or provide an opinion regarding the fairness of any transaction to any and all parties. This report does not represent legal advice, which can only be provided by legal counsel and for which you should seek advice of counsel. The opinions expressed herein are valid only for the purpose stated herein and as of the date hereof.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been verified. No warranty is given as to the accuracy of such information. Public information and industry and statistical data are from sources Oliver Wyman deems to be reliable; however, Oliver Wyman makes no representation as to the accuracy or completeness of such information and has accepted the information without further verification. No responsibility is taken for changes in market conditions or laws or regulations and no obligation is assumed to revise this report to reflect changes, events or conditions, which occur subsequent to the date hereof.